There is no good reason to want to write this using a dictionary in Python. It's strange and is not a common way to namespace functions.
The the Python philosophies that apply here are:
There should be one-- and preferably only one --obvious way to do it.
Combined with
Readability counts.
Doing it this way also makes things hard to understand and read for the typical Python user.
The good things the dictionary does in this case is map strings to functions and namespace them within a dictionary, but this functionality is already provided by both modules and classes and it's much easier to understand by those familiar with Python.
Examples:
Module method:
#cool.py
def cool():
print 'cool'
Now use the module like you would be using your dict:
import cool
#cool.__dict__['cool']()
#update - to the more correct idiom vars
vars(cool)['cool']()
Class method:
class Cool():
def cool():
print 'cool'
#Cool.__dict__['cool']()
#update - to the more correct idiom vars
vars(Cool)['cool']()
Edit after comment below:
argparse seems like a good fit for this problem, so you don't have to reinvent the wheel. If you do decide to implement it completely yourself though argparse source should give you some good direction. Anyways the sections below seem to apply to this use case:
15.4.4.5. Beyond sys.argv
Sometimes it may be useful to have an ArgumentParser parse arguments
other than those of sys.argv. This can be accomplished by passing a
list of strings to parse_args(). This is useful for testing at the
interactive prompt:
15.4.5.1. Sub-commands¶
ArgumentParser.add_subparsers()
Many programs split up their functionality into a number of sub-commands, for example, the svn program can invoke sub-commands
like svn checkout, svn update, and svn commit.
15.4.4.6. The Namespace object
It may also be useful to have an ArgumentParser assign attributes to
an already existing object, rather than a new Namespace object. This
can be achieved by specifying the namespace= keyword argument:
Update, here's an example using argparse
strategizer = argparse.ArgumentParser()
strat_subs = strategizer.add_subparsers()
math = strat_subs.add_parser('math')
math_subs = math.add_subparsers()
math_max = math_subs.add_parser('max')
math_sum = math_subs.add_parser('sum')
math_max.set_defaults(strategy=max)
math_sum.set_defaults(strategy=sum)
strategizer.parse_args('math max'.split())
Out[46]: Namespace(strategy=<built-in function max>)
strategizer.parse_args('math sum'.split())
Out[47]: Namespace(strategy=<built-in function sum>)
I would like to note the reasons I would recommend argparse
- Mainly the requirement to use strings that represent options and sub options to map to functions.
- It's dead simple (after getting past the feature filled argparse module).
- Uses a Python Standard Library Module. This let's others familiar with Python grok what your doing without getting into implementation details, and is very well documented for those who aren't.
- Many extra features could be taken advantage of out of the box (not the best reason!).
Using argparse and Strategy Pattern together
For the plain and simple implementation of the Strategy Pattern, this has already been answered very well.
How to write Strategy Pattern in Python differently than example in Wikipedia?
#continuing from the above example
class MathStudent():
def do_math(self, numbers):
return self.strategy(numbers)
maximus = strategizer.parse_args('math max'.split(),
namespace=MathStudent())
sumera = strategizer.parse_args('math sum'.split(),
namespace=MathStudent())
maximus.do_math([1, 2, 3])
Out[71]: 3
sumera.do_math([1, 2, 3])
Out[72]: 6