There's no need to create the additional three versions of the image, just address them differently or use something like the class I created here. Better still, just duplicate the 5x5 matrix and rotate those instead. You can then linearly scan the image for all rotations (which is a good thing).
This problem will not scale well for parallel processing since the bottleneck is certainly accessing the image data. Having multiple threads accessing the same data will slow it down, especially if the threads get 'out of sync', i.e. one thread gets further through the image than the other threads so that the other threads end up reloading the data the first thread has discarded.
So, the solution I think will be most efficient is to create four threads that scan 5 lines of the image, one thread per rotation. A fifth thread loads the image data one line at a time and passes the line to each of the four scanning threads, waiting for all four threads to complete, i.e. load one line of image, append to five line buffer, start the four scanning threads, wait for threads to end and repeat until all image lines are read.