I often see instances in which using a macro is better than using a function.
Could someone explain me with an example the disadvantage of a macro compared to a function?
I often see instances in which using a macro is better than using a function.
Could someone explain me with an example the disadvantage of a macro compared to a function?
Macros are error-prone because they rely on textual substitution and do not perform type-checking. For example, this macro:
#define square(a) a * a
works fine when used with an integer:
square(5) --> 5 * 5 --> 25
but does very strange things when used with expressions:
square(1 + 2) --> 1 + 2 * 1 + 2 --> 1 + 2 + 2 --> 5
square(x++) --> x++ * x++ --> increments x twice
Putting parentheses around arguments helps but doesn't completely eliminate these problems.
When macros contain multiple statements, you can get in trouble with control-flow constructs:
#define swap(x, y) t = x; x = y; y = t;
if (x < y) swap(x, y); -->
if (x < y) t = x; x = y; y = t; --> if (x < y) { t = x; } x = y; y = t;
The usual strategy for fixing this is to put the statements inside a "do { ... } while (0)" loop.
If you have two structures that happen to contain a field with the same name but different semantics, the same macro might work on both, with strange results:
struct shirt
{
int numButtons;
};
struct webpage
{
int numButtons;
};
#define num_button_holes(shirt) ((shirt).numButtons * 4)
struct webpage page;
page.numButtons = 2;
num_button_holes(page) -> 8
Finally, macros can be difficult to debug, producing weird syntax errors or runtime errors that you have to expand to understand (e.g. with gcc -E), because debuggers cannot step through macros, as in this example:
#define print(x, y) printf(x y) /* accidentally forgot comma */
print("foo %s", "bar") /* prints "foo %sbar" */
Inline functions and constants help to avoid many of these problems with macros, but aren't always applicable. Where macros are deliberately used to specify polymorphic behavior, unintentional polymorphism may be difficult to avoid. C++ has a number of features such as templates to help create complex polymorphic constructs in a typesafe way without the use of macros; see Stroustrup's The C++ Programming Language for details.
Macro features:
Function features:
Side-effects are a big one. Here's a typical case:
#define min(a, b) (a < b ? a : b)
min(x++, y)
gets expanded to:
(x++ < y ? x++ : y)
x
gets incremented twice in the same statement. (and undefined behavior)
Writing multi-line macros are also a pain:
#define foo(a,b,c) \
a += 10; \
b += 10; \
c += 10;
They require a \
at the end of each line.
Macros can't "return" anything unless you make it a single expression:
int foo(int *a, int *b){
side_effect0();
side_effect1();
return a[0] + b[0];
}
Can't do that in a macro unless you use GCC's statement expressions. (EDIT: You can use a comma operator though... overlooked that... But it might still be less readable.)
Order of Operations: (courtesy of @ouah)
#define min(a,b) (a < b ? a : b)
min(x & 0xFF, 42)
gets expanded to:
(x & 0xFF < 42 ? x & 0xFF : 42)
But &
has lower precedence than <
. So 0xFF < 42
gets evaluated first.
When in doubt, use functions (or inline functions).
However answers here mostly explain the problems with macros, instead of having some simple view that macros are evil because silly accidents are possible.
You can be aware of the pitfalls and learn to avoid them. Then use macros only when there is a good reason to.
There are certain exceptional cases where there are advantages to using macros, these include:
va_args
.__FILE__
, __LINE__
, __func__
). check for pre/post conditions, assert
on failure, or even static-asserts so the code won't compile on improper use (mostly useful for debug builds).struct
members are present before castingfunc(FOO, "FOO");
, you could define a macro that expands the string for you func_wrapper(FOO);
inline
functions may be an option).Admittedly, some of these rely on compiler extensions which aren't standard C. Meaning you may end up with less portable code, or have to ifdef
them in, so they're only taken advantage of when the compiler supports.
Noting this since its one of the most common causes of errors in macros (passing in x++
for example, where a macro may increment multiple times).
its possible to write macros that avoid side-effects with multiple instantiation of arguments.
If you like to have square
macro that works with various types and have C11 support, you could do this...
inline float _square_fl(float a) { return a * a; }
inline double _square_dbl(float a) { return a * a; }
inline int _square_i(int a) { return a * a; }
inline unsigned int _square_ui(unsigned int a) { return a * a; }
inline short _square_s(short a) { return a * a; }
inline unsigned short _square_us(unsigned short a) { return a * a; }
/* ... long, char ... etc */
#define square(a) \
_Generic((a), \
float: _square_fl(a), \
double: _square_dbl(a), \
int: _square_i(a), \
unsigned int: _square_ui(a), \
short: _square_s(a), \
unsigned short: _square_us(a))
This is a compiler extension supported by GCC, Clang, EKOPath & Intel C++ (but not MSVC);
#define square(a_) __extension__ ({ \
typeof(a_) a = (a_); \
(a * a); })
So the disadvantage with macros is you need to know to use these to begin with, and that they aren't supported as widely.
One benefit is, in this case, you can use the same square
function for many different types.
#define SQUARE(x) ((x)*(x))
int main() {
int x = 2;
int y = SQUARE(x++); // Undefined behavior even though it doesn't look
// like it here
return 0;
}
whereas:
int square(int x) {
return x * x;
}
int main() {
int x = 2;
int y = square(x++); // fine
return 0;
}
struct foo {
int bar;
};
#define GET_BAR(f) ((f)->bar)
int main() {
struct foo f;
int a = GET_BAR(&f); // fine
int b = GET_BAR(&a); // error, but the message won't make much sense unless you
// know what the macro does
return 0;
}
Compared to:
struct foo {
int bar;
};
int get_bar(struct foo *f) {
return f->bar;
}
int main() {
struct foo f;
int a = get_bar(&f); // fine
int b = get_bar(&a); // error, but compiler complains about passing int* where
// struct foo* should be given
return 0;
}
No type checking of parameters and code is repeated which can lead to code bloat. The macro syntax can also lead to any number of weird edge cases where semi-colons or order of precedence can get in the way. Here's a link that demonstrates some macro evil
Adding to this answer..
Macros are substituted directly into the program by the preprocessor (since they basically are preprocessor directives). So they inevitably use more memory space than a respective function. On the other hand, a function requires more time to be called and to return results, and this overhead can be avoided by using macros.
Also macros have some special tools than can help with program portability on different platforms.
Macros don't need to be assigned a data type for their arguments in contrast with functions.
Overall they are a useful tool in programming. And both macroinstructions and functions can be used depending on the circumstances.
one drawback to macros is that debuggers read source code, which does not have expanded macros, so running a debugger in a macro is not necessarily useful. Needless to say, you cannot set a breakpoint inside a macro like you can with functions.
I did not notice, in the answers above, one advantage of functions over macros that I think is very important:
Functions can be passed as arguments, macros cannot.
Concrete example: You want to write an alternate version of the standard 'strpbrk' function that will accept, rather than an explicit list of characters to search for within another string, a (pointer to a) function that will return 0 until a character is found that passes some test (user-defined). One reason you might want to do this is so that you can exploit other standard library functions: instead of providing an explicit string full of punctuation, you could pass ctype.h's 'ispunct' instead, etc. If 'ispunct' was implemented only as a macro, this wouldn't work.
There are lots of other examples. For example, if your comparison is accomplished by macro rather than function, you can't pass it to stdlib.h's 'qsort'.
An analogous situation in Python is 'print' in version 2 vs. version 3 (non-passable statement vs. passable function).
If you pass function as an argument to macro it will be evaluated every time. For example, if you call one of the most popular macro:
#define MIN(a,b) ((a)<(b) ? (a) : (b))
like that
int min = MIN(functionThatTakeLongTime(1),functionThatTakeLongTime(2));
functionThatTakeLongTime will be evaluated 5 times which can significantly drop perfomance