You might also enjoy a recursive solution:
def span(lst):
yield [lst]
for i in range(1, len(lst)):
for x in span(lst[i:]):
yield [lst[:i]] + x
Explanation
We exploit recursion here to break the problem down. The approach is the following:
For every list, the whole list is a valid spanning: [1,2,3,4] => [[1,2,3,4]]
.
For every list that is longer than size 1
, we can use the first item as a group and then apply the same algorithm on the remaining list to get all the combined results:
[1,2,3] =>
[[1]] + [[2], [3]] # => [[1], [2], [3]]
[[1]] + [[2,3]] # => [[1], [2,3]]
For every list that is longer than size 2
, we can just as well use the first two items as a group and then apply the same algorithm on the remaining list and combine the results:
[1,2,3,4,5] =>
[[1,2]] + [[3], [4], [5]] # => [[1,2], [3], [4], [5]]
[[1,2]] + [[3,4], [5]] # => [[1,2], [3,4], [5]]
[[1,2]] + [[3], [4,5]] # => [[1,2], [3], [4,5]]
[[1,2]] + [[3,4,5]] # => [[1,2], [3,4,5]]
We can see that the possible combinations on the right side are indeed all possible groupings of the remainder of the list, [3,4,5]
.
For every list that is longer than ... etc. Thus, the final algorithm is the following:
- yield the whole list (it is always a valid spanning, see above)
- For every possible splitting of the list, yield the left-hand part of the list combined with all possible spannings of the right-hand part of the list.
yield
is a special keyword in Python that make the function a generator, which means that it returns a iterable object that can be used to enumerate all results found. You can transform the result into a list using the list
constructor function: list(span([1,2,3,4]))
.