I’m having a bit of trouble controlling the results from a data generating algorithm I am working on. Basically it takes values from a list and then lists all the different combinations to get to a specific sum. So far the code works fine(haven’t tested scaling it with many variables yet), but I need to allow for negative numbers to be include in the list.
The way I think I can solve this problem is to put a collar on the possible results as to prevent infinity results(if apples is 2 and oranges are -1 then for any sum, there will be an infinite solutions but if I say there is a limit of either then it cannot go on forever.)
So Here's super basic code that detects weights:
import math
data = [-2, 10,5,50,20,25,40]
target_sum = 100
max_percent = .8 #no value can exceed 80% of total(this is to prevent infinite solutions
for node in data:
max_value = abs(math.floor((target_sum * max_percent)/node))
print node, "'s max value is ", max_value
Here's the code that generates the results(first function generates a table if its possible and the second function composes the actual results. Details/pseudo code of the algo is here: Can brute force algorithms scale? ):
from collections import defaultdict
data = [-2, 10,5,50,20,25,40]
target_sum = 100
# T[x, i] is True if 'x' can be solved
# by a linear combination of data[:i+1]
T = defaultdict(bool) # all values are False by default
T[0, 0] = True # base case
for i, x in enumerate(data): # i is index, x is data[i]
for s in range(target_sum + 1): #set the range of one higher than sum to include sum itself
for c in range(s / x + 1):
if T[s - c * x, i]:
T[s, i+1] = True
coeff = [0]*len(data)
def RecursivelyListAllThatWork(k, sum): # Using last k variables, make sum
# /* Base case: If we've assigned all the variables correctly, list this
# * solution.
# */
if k == 0:
# print what we have so far
print(' + '.join("%2s*%s" % t for t in zip(coeff, data)))
return
x_k = data[k-1]
# /* Recursive step: Try all coefficients, but only if they work. */
for c in range(sum // x_k + 1):
if T[sum - c * x_k, k - 1]:
# mark the coefficient of x_k to be c
coeff[k-1] = c
RecursivelyListAllThatWork(k - 1, sum - c * x_k)
# unmark the coefficient of x_k
coeff[k-1] = 0
RecursivelyListAllThatWork(len(data), target_sum)
My problem is, I don't know where/how to integrate my limiting code to the main code inorder to restrict results and allow for negative numbers. When I add a negative number to the list, it displays it but does not include it in the output. I think this is due to it not being added to the table(first function) and I'm not sure how to have it added(and still keep the programs structure so I can scale it with more variables).
Thanks in advance and if anything is unclear please let me know.
edit: a bit unrelated(and if detracts from the question just ignore, but since your looking at the code already, is there a way I can utilize both cpus on my machine with this code? Right now when I run it, it only uses one cpu. I know the technical method of parallel computing in python but not sure how to logically parallelize this algo)