From my previous answer here: Finding maximum for every window of size k in an array, which has a list of FOUR different O(n) solutions.
0) An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.