You need to clarify by what you mean by "product of divisors." The code posted in the question doesn't work for any definition yet. This sounds like a homework question. If it is, then perhaps your instructor was expecting you to think outside the code to meet the time goals.
If you mean the product of unique prime divisors, e.g., 72 gives 2*3 = 6, then having a list of primes is the way to go. Just run through the list up to the square root of the number, multiplying present primes into the result. There are not that many, so you could even hard code them into your program.
If you mean the product of all the divisors, prime or not, then it is helpful to think of what the divisors are. You can make serious speed gains over the brute force method suggested in the other answers and yours. I suspect this is what your instructor intended.
If the divisors are ordered in a list, then they occur in pairs that multiply to n -- 1 and n, 2 and n/2, etc. -- except for the case where n is a perfect square, where the square root is a divisor that is not paired with any other.
So the result will be n to the power of half the number of divisors, (regardless of whether or not n is a square).
To compute this, find the prime factorization using your list of primes. That is, find the power of 2 that divides n, then the power of 3, etc. To do this, take out all the 2s, then the 3s, etc.
The number you are taking the factors out of will be getting smaller, so you can do the square root test on the smaller intermediate numbers to see if you need to continue up the list of primes. To gain some speed, test p*p <= m, rather than p <= sqrt(m)
Once you have the prime factorization, it is easy to find the number of divisors. For example, suppose the factorization is 2^i * 3^j * 7^k. Then, since each divisor uses the same prime factors, with exponents less than or equal to those in n including the possibility of 0, the number of divisors is (i+1)(j+1)(k+1).
E.g., 72 = 2^3 * 3^2, so the number of divisors is 4*3 = 12, and their product is 72^6 = 139,314,069,504.
By using math, the algorithm can become much better than O(n). But it is hard to estimate your speed gains ahead of time because of the relatively small size of the n in the input.