What is the C++ Standard specified behavior of new
in c++?
The usual notion is that if new
operator cannot allocate dynamic memory of the requested size, then it should throw an exception of type std::bad_alloc
.
However, something more happens even before a bad_alloc
exception is thrown:
C++03 Section 3.7.4.1.3: says
An allocation function that fails to allocate storage can invoke the currently installed new_handler(18.4.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently installed new_handler using the set_new_handler function (18.4.2.3).] If an allocation function declared with an empty exception-specification (15.4), throw(), fails to allocate storage, it shall return a null pointer. Any other allocation function that fails to allocate storage shall only indicate failure by throw-ing an exception of class std::bad_alloc (18.4.2.1) or a class derived from std::bad_alloc.
Consider the following code sample:
#include <iostream>
#include <cstdlib>
// function to call if operator new can't allocate enough memory or error arises
void outOfMemHandler()
{
std::cerr << "Unable to satisfy request for memory\n";
std::abort();
}
int main()
{
//set the new_handler
std::set_new_handler(outOfMemHandler);
//Request huge memory size, that will cause ::operator new to fail
int *pBigDataArray = new int[100000000L];
return 0;
}
In the above example, operator new
(most likely) will be unable to allocate space for 100,000,000 integers, and the function outOfMemHandler()
will be called, and the program will abort after issuing an error message.
As seen here the default behavior of new
operator when unable to fulfill a memory request, is to call the new-handler
function repeatedly until it can find enough memory or there is no more new handlers. In the above example, unless we call std::abort()
, outOfMemHandler()
would be called repeatedly. Therefore, the handler should either ensure that the next allocation succeeds, or register another handler, or register no handler, or not return (i.e. terminate the program). If there is no new handler and the allocation fails, the operator will throw an exception.
What is the new_handler
and set_new_handler
?
new_handler
is a typedef for a pointer to a function that takes and returns nothing, and set_new_handler
is a function that takes and returns a new_handler
.
Something like:
typedef void (*new_handler)();
new_handler set_new_handler(new_handler p) throw();
set_new_handler's parameter is a pointer to the function operator new
should call if it can't allocate the requested memory. Its return value is a pointer to the previously registered handler function, or null if there was no previous handler.
How to handle out of memory conditions in C++?
Given the behavior of new
a well designed user program should handle out of memory conditions by providing a proper new_handler
which does one of the following:
Make more memory available: This may allow the next memory allocation attempt inside operator new's loop to succeed. One way to implement this is to allocate a large block of memory at program start-up, then release it for use in the program the first time the new-handler is invoked.
Install a different new-handler: If the current new-handler can't make any more memory available, and of there is another new-handler that can, then the current new-handler can install the other new-handler in its place (by calling set_new_handler
). The next time operator new calls the new-handler function, it will get the one most recently installed.
(A variation on this theme is for a new-handler to modify its own behavior, so the next time it's invoked, it does something different. One way to achieve this is to have the new-handler modify static, namespace-specific, or global data that affects the new-handler's behavior.)
Uninstall the new-handler: This is done by passing a null pointer to set_new_handler
. With no new-handler installed, operator new
will throw an exception ((convertible to) std::bad_alloc
) when memory allocation is unsuccessful.
Throw an exception convertible to std::bad_alloc
. Such exceptions are not be caught by operator new
, but will propagate to the site originating the request for memory.
Not return: By calling abort
or exit
.