You have to be careful about the meaning you give to composition. In the more general sense, traits are a mechanism for decomposition as well as composition.
- Decomposition -- how we decompose a software base into suitable units
of reuse(code re-use, DRY).
- Composition -- how we compose these units to obtain a class hierarchy
suitable for our application domain.
Traits are a mechanism for composition in the sense that they can be composed with a class. Many trait implementations would also allow for traits to be composed with one another.
The GoF mantra is "favor composition over inheritance".
All class-based languages by default favor inheritance. Object can only acquire behaviours from their class or from classes higher in their inheritance chain. Sure you can achieve the same outcome in different ways. For instance, you can create a Manager Class (e.g., LayoutMananager) and then add a reference to it in any class that has a layable behavior/layout trait and add function that do nothing but call methods of the Manager
public function doSomething() { return layoutManager.doSomething(); }
Traits favor composition. Simple as that. The key characteristic of traits is that they live outside of the class hierarchy. You can "acquire" re-usable behaviors or traits without them coming from any of your super-class (the horizontal vs vertical distinction introduced in other posts). That's the main advantage.
The biggest issue with traits is the emergence of conflict when traits are implemented in a way that you can directly do myObject.doSomething() instead of myObject.trait1.doSometing() (directly, or indirectly as described above with layoutManager). Once you add more than one trait to a class, conflicts can easily emerge. Your implementation needs to support mechanisms like aliasing and override to help with conflict resolution. You get some overhead back.
It is not clear that the PHP implementation conform to this, but traits are also supposed to not specify any instance variables and the methods provided by traits should never directly access instance variables. (source: Adding Traits to (Statically Typed) Languages, PDF). This blog post discusses this. It claims that in PHP, the structure named trait really is a mixin (that is traits with state). (Though this other blog post describe them as stateless)
All, in all, thinking in terms of traits is likely to help write with better code. Writing your traits classes to avoid instantiation could also contribute to better code. This frees traits from any dependency, making it possible to call them in any order. But it is not clear that adding the concept of trait in the language itself would contribute to better code.