(Credit to andrew cooke's answer, who provided the link to Wheeler's and Gloria's "Readable Lisp S-expressions Project")
The link above is a project intended to provide a readable syntax for all languages based on s-expressions, including Scheme and Clojure. The conclusion is that it can be done: there's a way to have readable Lisp without the parentheses.
Basically what David Wheeler's project does is add syntactic sugar to Lisp-like languages to provide more modern syntax, in a way that doesn't break Lisp's support for domain-specific languages. The enhancements are optional and backwards-compatible, so you can include as much or as little of it as you want and mix them with existing code.
This project defines three new expression types:
- Curly-infix-expressions. (+ 1 2 3) becomes {1 + 2 + 3} at every place you want to use infix operators of any arity. (There is a special case that needs to be handled with care if the inline expression uses several operators, like {1 + 2 * 3} - although {1 + {2 * 3} } works as expected).
- Neoteric-expressions. (f x y) becomes f(x y) (requires that no space is placed between the function name and its parameters)
- Sweet-expressions. Opening and closing parens can be replaced with (optional) python-like semantic indentation. Sweet-expressions can be freely mixed with traditional parentheses s-expressions.
The result is Lisp-compliant but much more readable code. An example of how the new syntactic sugar enhances readability:
(define (gcd_ a b)
(let (r (% b a))
(if (= r 0) a (gcd_ r a))))
(define-macro (my-gcd)
(apply gcd_ (args) 2))
becomes:
define gcd_(a b)
let r {b % a}
if {r = 0} a gcd_(r a)
define-macro my-gcd()
apply gcd_ (args) 2
Note how the syntax is compatible with macros, which was a problem with previous projects that intended to improve Lisp syntax (as described by Wheeler and Gloria). Because it's just sugar, the final form of each new expression is a s-expression, transformed by the language reader before macros are processed - so macros don't need any special treatment. Thus the "readable Lisp" project preserves homoiconicity, the property that allows Lisp to represent code as data within the language, which is what allows it to be a powerful meta-programming environment.