What I would like to have is the almost opposite of Number.prototype.toPrecision(), meaning that when i have number, how many decimals does it have? E.g.
(12.3456).getDecimals() // 4
What I would like to have is the almost opposite of Number.prototype.toPrecision(), meaning that when i have number, how many decimals does it have? E.g.
(12.3456).getDecimals() // 4
For anyone wondering how to do this faster (without converting to string), here's a solution:
function precision(a) {
var e = 1;
while (Math.round(a * e) / e !== a) e *= 10;
return Math.log(e) / Math.LN10;
}
Edit: a more complete solution with edge cases covered:
function precision(a) {
if (!isFinite(a)) return 0;
var e = 1, p = 0;
while (Math.round(a * e) / e !== a) { e *= 10; p++; }
return p;
}
One possible solution (depends on the application):
var precision = (12.3456 + "").split(".")[1].length;
If by "precision" you mean "decimal places", then that's impossible because floats are binary. They don't have decimal places, and most values that have a small number of decimal places have recurring digits in binary, and when they're translated back to decimal that doesn't necessarily yield the original decimal number.
Any code that works with the "decimal places" of a float is liable to produce unexpected results on some numbers.
There is no native function to determine the number of decimals. What you can do is convert the number to string and then count the offset off the decimal delimiter .
:
Number.prototype.getPrecision = function() {
var s = this + "",
d = s.indexOf('.') + 1;
return !d ? 0 : s.length - d;
};
(123).getPrecision() === 0;
(123.0).getPrecision() === 0;
(123.12345).getPrecision() === 5;
(1e3).getPrecision() === 0;
(1e-3).getPrecision() === 3;
But it's in the nature of floats to fool you. 1
may just as well be represented by 0.00000000989
or something. I'm not sure how well the above actually performs in real life applications.
Basing on @blackpla9ue comment and considering numbers exponential format:
function getPrecision (num) {
var numAsStr = num.toFixed(10); //number can be presented in exponential format, avoid it
numAsStr = numAsStr.replace(/0+$/g, '');
var precision = String(numAsStr).replace('.', '').length - num.toFixed().length;
return precision;
}
getPrecision(12.3456); //4
getPrecision(120.30003300000); //6, trailing zeros are truncated
getPrecision(15); //0
getPrecision(120.000)) //0
getPrecision(0.0000005); //7
getPrecision(-0.01)) //2
Based on @boolean_Type's method of handling exponents, but avoiding the regex:
function getPrecision (value) {
if (!isFinite(value)) { return 0; }
const [int, float = ''] = Number(value).toFixed(12).split('.');
let precision = float.length;
while (float[precision - 1] === '0' && precision >= 0) precision--;
return precision;
}
Here are a couple of examples, one that uses a library (BigNumber.js), and another that doesn't use a library. Assume you want to check that a given input number (inputNumber
) has an amount of decimal places that is less than or equal to a maximum amount of decimal places (tokenDecimals
).
With BigNumber.js
import BigNumber from 'bignumber.js'; // ES6
// const BigNumber = require('bignumber.js').default; // CommonJS
const tokenDecimals = 18;
const inputNumber = 0.000000000000000001;
// Convert to BigNumber
const inputNumberBn = new BigNumber(inputNumber);
// BigNumber.js API Docs: http://mikemcl.github.io/bignumber.js/#dp
console.log(`Invalid?: ${inputNumberBn.dp() > tokenDecimals}`);
Without BigNumber.js
function getPrecision(numberAsString) {
var n = numberAsString.toString().split('.');
return n.length > 1
? n[1].length
: 0;
}
const tokenDecimals = 18;
const inputNumber = 0.000000000000000001;
// Conversion of number to string returns scientific conversion
// So obtain the decimal places from the scientific notation value
const inputNumberDecimalPlaces = inputNumber.toString().split('-')[1];
// Use `toFixed` to convert the number to a string without it being
// in scientific notation and with the correct number decimal places
const inputNumberAsString = inputNumber.toFixed(inputNumberDecimalPlaces);
// Check if inputNumber is invalid due to having more decimal places
// than the permitted decimal places of the token
console.log(`Invalid?: ${getPrecision(inputNumberAsString) > tokenDecimals}`);
Assuming number is valid.
let number = 0.999;
let noOfPlaces = number.includes(".") //includes or contains
? number.toString().split(".").pop().length
: 0;
5.3M ops/s (81.82 % slower):
function precision (n) {
return (n.toString().split('.')[1] || '').length;
}
precision(1.0123456789)
29M ops/s (fastest):
function precision (n) {
let e = 1;
let p = 0;
while (Math.round(n * e) / e !== n) {
e *= 10;
p++;
}
return p;
}
precision(1.0123456789);
Try the following
function countDecimalPlaces(number) {
var str = "" + number;
var index = str.indexOf('.');
if (index >= 0) {
return str.length - index - 1;
} else {
return 0;
}
}
Here is a simple solution
First of all, if you pass a simple float value as 12.1234 then most of the below/above logics may work but if you pass a value as 12.12340, then it may exclude a count of 0. For e.g, if the value is 12.12340 then it may give you a result of 4 instead of 5. As per your problem statement, if you ask javascript to split and count your float value into 2 integers then it won't include trailing 0s of it.
Let's satisfy our requirement here with a trick ;)
In the below function you need to pass a value in string format and it will do your work
function getPrecision(value){
a = value.toString()
console.log('a ->',a)
b = a.split('.')
console.log('b->',b)
return b[1].length
getPrecision('12.12340') // Call a function
For an example, run the below logic
value = '12.12340'
a = value.toString()
b = a.split('.')
console.log('count of trailing decimals->',b[1].length)
That's it! It will give you the exact count for normal float values as well as the float values with trailing 0s!
Thank you!
This answer adds to Mourner's accepted solution by making the function more robust. As noted by many, floating point precision makes such a function unreliable. For example, precision(0.1+0.2)
yields 17 rather than 1 (this might be computer specific, but for this example see https://jsfiddle.net/s0v17jby/5/).
IMHO, there are two ways around this: 1. either properly define a decimal type, using e.g. https://github.com/MikeMcl/decimal.js/, or 2. define an acceptable precision level which is both OK for your use case and not a problem for the js Number representation (8 bytes can safely represent a total of 16 digits AFAICT). For the latter workaround, one can write a more robust variant of the proposed function:
const MAX_DECIMAL_PRECISION = 9; /* must be <= 15 */
const maxDecimalPrecisionFloat = 10**MAX_DECIMAL_PRECISION;
function precisionRobust(a) {
if (!isFinite(a)) return 0;
var e = 1, p = 0;
while ( ++p<=MAX_DECIMAL_PRECISION && Math.round( ( Math.round(a * e) / e - a ) * maxDecimalPrecisionFloat ) !== 0) e *= 10;
return p-1;
}
In the above example, the maximum precision of 9 means this accepts up to 6 digits before the decimal point and 9 after (so this would work for numbers less than one million and with a maximum of 9 decimal points). If your use-case numbers are smaller then you can choose to make this precision even greater (but with a maximum of 15). It turns out that, for calculating precision, this function seems to do OK on larger numbers as well (though that would no longer be the case if we were, say, adding two rounded numbers within the precisionRobust function).
Finally, since we now know the maximum useable precision, we can further avoid infinite loops (which I have not been able to replicate but which still seem to cause problems for some).