In short, not as often as you would think. The reason is that the "fancy techniques" such as stream fusion are employed when the libraries are implemented, and library users don't need to worry about them.
Consider Data.List.map
. The base package defines map
as
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
This map
is self-recursive, so GHC won't inline it.
However, base
also defines the following rewrite rules:
{-# RULES
"map" [~1] forall f xs. map f xs = build (\c n -> foldr (mapFB c f) n xs)
"mapList" [1] forall f. foldr (mapFB (:) f) [] = map f
"mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f.g)
#-}
This replaces uses of map
via foldr/build fusion, then, if the function cannot be fused, replaces it with the original map
. Because the fusion happens automatically, it doesn't depend on the user being aware of it.
As proof that this all works, you can examine what GHC produces for specific inputs. For this function:
proc1 = sum . take 10 . map (+1) . map (*2)
eval1 = proc1 [1..5]
eval2 = proc1 [1..]
when compiled with -O2, GHC fuses all of proc1
into a single recursive form (as seen in the core output with -ddump-simpl
).
Of course there are limits to what these techniques can accomplish. For example, the naive average function, mean xs = sum xs / length xs
is easily manually transformed into a single fold, and frameworks exist that can do so automatically, however at present there's no known way to automatically translate between standard functions and the fusion framework. So in this case, the user does need to be aware of the limitations of the compiler-produced code.
So in many cases compilers are sufficiently advanced to create code that's fast and elegant. Knowing when they will do so, and when the compiler is likely to fall down, is IMHO a large part of learning how to write efficient Haskell code.