This is what I would do:
def prime_factors(x):
factors = []
while x % 2 == 0:
factors.append(2)
x /= 2
i = 3
while i * i <= x:
while x % i == 0:
x /= i
factors.append(i)
i += 2
if x > 1:
factors.append(x)
return factors
>>> prime_factors(600851475143)
[71, 839, 1471, 6857]
It's pretty fast and I think it's right. It's pretty simple to take the max of the factors found.
2017-11-08
Returning to this 5 years later, I would use yield
and yield from
plus faster counting over the prime range:
def prime_factors(x):
def diver(x, i):
j = 0
while x % i == 0:
x //= i
j += 1
return x, [i] * j
for i in [2, 3]:
x, vals = diver(x, i)
yield from vals
i = 5
d = {5: 2, 1: 4}
while i * i <= x:
x, vals = diver(x, i)
yield from vals
i += d[i % 6]
if x > 1:
yield x
list(prime_factors(600851475143))
The dict {5: 2, 1: 4}
uses the fact that you don't have to look at all odd numbers. Above 3, all numbers x % 6 == 3
are multiples of 3, so you need to look at only x % 6 == 1
and x % 6 == 5
, and you can hop between these by alternately adding 2 and 4, starting from 5.