If you're extending the question from mere swizzling to actual library modification then I can think of useful examples.
As of iOS 5, NSURLConnection
provides sendAsynchronousRequest:queue:completionHandler:
, which is a block (/closure) driven way to perform an asynchronous load from any resource identifiable with a URL (local or remote). It's a very useful way to be able to proceed as it makes your code cleaner and smaller than the classical delegate alternative and is much more likely to keep the related parts of your code close to one another.
That method isn't supplied in iOS 4. So what I've done in my project is that, when the application is launched (via a suitable + (void)load
), I check whether the method is defined. If not I patch an implementation of it onto the class. Henceforth every other part of the program can be written to the iOS 5 specification without performing any sort of version or availability check exactly as if I was targeting iOS 5 only, except that it'll also run on iOS 4.
In Java or C++ I guess the same sort of thing would be achieved by creating your own class to issue URL connections that performs a runtime check each time it is called. That's a worse solution because it's more difficult to step back from. This way around if I decide one day to support iOS 5 only I simply delete the source file that adds my implementation of sendAsynchronousRequest:...
. Nothing else changes.
As for method swizzling, the only times I see it suggested are where somebody wants to change the functionality of an existing class and doesn't have access to the code in which the class is created. So you're usually talking about trying to modify logically opaque code from the outside by making assumptions about its implementation. I wouldn't really support that as an idea on any language. I guess it gets recommended more in Objective-C because Apple are more prone to making things opaque (see, e.g. every app that wanted to show a customised camera view prior to iOS 3.1, every app that wanted to perform custom processing on camera input prior to iOS 4.0, etc), rather than because it's a good idea in Objective-C. It isn't.
EDIT: so, in further exposition — I can't post full code because I wrote it as part of my job, but I have a class named NSURLConnectionAsyncForiOS4
with an implementation of sendAsynchronousRequest:queue:completionHandler:
. That implementation is actually quite trivial, just dispatching an operation to the nominated queue that does a synchronous load via the old sendSynchronousRequest:...
interface and then posts the results from that on to the handler.
That class has a + (void)load
, which is the class method you add to a class that will be issued immediately after that class has been loaded into memory, effectively as a global constructor for the metaclass and with all the usual caveats.
In my +load
I use the Objective-C runtime directly via its C interface to check whether sendAsynchronousRequest:...
is defined on NSURLConnection
. If it isn't then I add my implementation to NSURLConnection
, so from henceforth it is defined. This explicitly isn't swizzling — I'm not adjusting the existing implementation of anything, I'm just adding a user-supplied implementation of something if Apple's isn't available. Relevant runtime calls are objc_getClass
, class_getClassMethod
and class_addMethod
.
In the rest of the code, whenever I want to perform an asynchronous URL connection I just write e.g.
[NSURLConnection sendAsynchronousRequest:request
queue:[self anyBackgroundOperationQueue]
completionHandler:
^(NSURLResponse *response, NSData *data, NSError *blockError)
{
if(blockError)
{
// oh dear; was it fatal?
}
if(data)
{
// hooray! You know, unless this was an HTTP request, in
// which case I should check the response code, etc.
}
/* etc */
}
So the rest of my code is just written to the iOS 5 API and neither knows nor cares that I have a shim somewhere else to provide that one microscopic part of the iOS 5 changes on iOS 4. And, as I say, when I stop supporting iOS 4 I'll just delete the shim from the project and all the rest of my code will continue not to know or to care.
I had similar code to supply an alternative partial implementation of NSJSONSerialization
(which dynamically created a new class in the runtime and copied methods to it); the one adjustment you need to make is that references to NSJSONSerialization
elsewhere will be resolved once at load time by the linker, which you don't really want. So I added a quick #define
of NSJSONSerialization
to NSClassFromString(@"NSJSONSerialization")
in my precompiled header. Which is less functionally neat but a similar line of action in terms of finding a way to keep iOS 4 support for the time being while just writing the rest of the project to the iOS 5 standards.