I am currently trying to use ggplot2 to visualize results from simple current-voltage experiments. I managed to achieve good results for one set of data of course.
However, I have a number of current-voltage datasets, which I input in R recursively to get the following organisation (see minimal code) :
data.frame(cbind(batch(string list), sample(string list), dataset(data.frame list)))
Edit : My data are stored in text files names batchname_samplenumber.txt, with voltage and current columns. The code I use to import them is :
require(plyr)
require(ggplot2)
#VARIABLES
regex <- "([[:alnum:]_]+).([[:alpha:]]+)"
regex2 <- "G5_([[:alnum:]]+)_([[:alnum:]]+).([[:alpha:]]+)"
#FUNCTIONS
getJ <- function(list, k) llply(list, function(i) llply(i, function(i, indix) getElement(i,indix), indix = k))
#FILES
files <- list.files("Data/",full.names= T)
#NAMES FOR FILES
paths <- llply(llply(files, basename),function(i) regmatches(i,regexec(regex,i)))
paths2 <- llply(llply(files, basename),function(i) regmatches(i,regexec(regex2,i)))
names <- llply(llply(getJ(paths, 2)),unlist)
batches <- llply(llply(getJ(paths2, 2)),unlist)
samples <- llply(llply(getJ(paths2, 3)),unlist)
#SETS OF DATA, NAMED
sets <- llply(files,function(i) read.table(i,skip = 0, header = F))
names(sets) <- names
for (i in as.list(names)) names(sets[[i]]) <- c("voltage","current")
df<-data.frame(cbind(batches,samples,sets))
And a minimal data can be generated via :
require(plyr)
batch <- list("A","A","B","B")
sample <- list(1,2,1,2)
set <- list(data.frame(voltage = runif(10), current = runif(10)),data.frame(voltage = runif(10), current = runif(10)),data.frame(voltage = runif(10), current = runif(10)),data.frame(voltage = runif(10), current = runif(10)))
df<-data.frame(cbind(batch,sample,set))
My question is : is it possible to use the data as is to plot using a code similar to the following (which does not work) ?
ggplot(data, aes(x = dataset$current, y = dataset$voltage, colour = sample)) + facet_wrap(~batch)
The more general version would be : is ggplot2 able of handeling raw physical data, as opposed to discrete statistical data (like diamonds, cars) ?