If you're not super worried about drift, and assuming that the machines aren't just randomly changing time, then you could ping an NTP server to get what time IT thinks it is, and compare that to the time your local machine thinks that it is, then calculate the differential and finally schedule your task in local time.
So, for example, say that the NTP server says that it's 12:30, but your local machine says that it is 12:25. And you want your task to go off at 13:00 NTP time.
So, 12:25 - 12:30 = -0:05. 13:00 + (-0:05) = 12:55, therefore you schedule your task for 12:55.
Addenda --
I can't speak to the naivety of an implementation, I'm not familiar enough with the protocol.
In the end it comes down to what level of practical accuracy is acceptable to you. NTP is used to synchronize time between systems. One of the problems it solves is by being continually invoked, it prevents clock creep. If you use the "NTP Ping, schedule with offset" technique, and, say, that future time is perhaps 8 hrs in the future, there's a very real possibility of clock creep, meaning that although you wanted the task to go off at "12:55", when 12:55 rolls around, it could be off from the original NTP server since the clocks have not been synced (at all), and the job has not been rescheduled to virtually resync.
Obviously, the longer the period between original schedule and actual execution, the more the potential for drift. This is an artifact no matter how good the original NTP ping is. If you do not plan on rescheduling these tasks as they get close to execution time in order to compensate for drift, then odds are any "reasonable" implementation of NTP will suit.
There's the Apache Commons NET library that has a NTP client. Some complain that it uses System.currentTimeMillis(), which has (had?) resolution issues (10-15ms) on Windows. System.nanoTime addresses this, and you could easily change the library to use that, and rebuild it.
I can't speak to how it reflects the "naivety" of the implementation. But in the end it comes down to how close you need to keep the two machines and their jobs (virtually) in sync.