I am doing now some data analyse tests and in the first, really simple I have got very strange results.
The idea is the following: from an internet access log (a collection with a document for each access, for the tests 90 millions of documents). I want to get the number of access by domain (what will be a GROUP BY in MySQL), and get the 10 most accessed domains
The script I have made in JavaScript is really simple :
/* Counts each domain url */
m = function () {
emit(this.domain, 1 );
}
r = function (key, values) {
total = 0;
for (var i in values) {
total += Number(i);
}
return total;
}
/* Store of visits per domain statistics on NonFTP_Access_log_domain_visits collection */
res = db.NonFTP_Access_log.mapReduce(m, r, { out: { replace : "NonFTP_Access_log_domain_visits" } } );
db.NonFTP_Access_log_domain_visits.ensureIndex({ "value": 1});
db.NonFTP_Access_log_domain_visits.find({}).sort({ "value":-1 }).limit(10).forEach(printjson);
The equivalent in MySQL is :
drop table if exists NonFTP_Access_log_domain_visits;
create table NonFTP_Access_log_domain_visits (
`domain` varchar(255) NOT NULL,
`value` int unsigned not null,
PRIMARY KEY (`domain`),
KEY `value_index` (`value`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
select domain, count(*) as value from NonFTP_Access_log group by domain;
select * from NonFTP_Access_log_domain_visits order by value desc limit 10;
Well, MongoDB takes 30 hours to get the results and MySQL 20 minutes! After reading a little I have arrived to the conclusion that for data analyse we will have to use Hadoop as MongoDB is really slow. The answers to questions like this say that:
- MongoDB uses only thread
- Javascript is just too slow
What am I doing wrong? Are this results normal? Should I use Hadoop?
We are making this test on the following environment:
- Operating System: Suse Linux Enterprise Server 10 (Virtual Server on Xen)
- RAM: 10 Gb
- Cores: 32 (AMD Opteron Processor 6128)