MapReduce is an algorithm for processing huge datasets on certain kinds of distributable problems using a large number of nodes
MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key.
The advantage of MapReduce is that it allows for distributed processing of the map and reduction operations. Provided each mapping operation is independent of the other, all maps can be performed in parallel - though in practice it is limited by the data source and/or the number of CPUs near that data. Similarly, a set of 'reducers' can perform the reduction phase - all that is required is that all outputs of the map operation which share the same key are presented to the same reducer, at the same time. While this process can often appear inefficient compared to algorithms that are more sequential, MapReduce can be applied to significantly larger datasets than "commodity" servers can handle - a large server farm can use MapReduce to sort a petabyte of data in only a few hours. The parallelism also offers some possibility of recovering from partial failure of servers or storage during the operation: if one mapper or reducer fails, the work can be rescheduled — assuming the input data is still available.
"Map" step: The master node takes the input, chops it up into smaller sub-problems, and distributes those to worker nodes. A worker node may do this again in turn, leading to a multi-level tree structure. The worker node processes that smaller problem, and passes the answer back to its master node.
"Reduce" step: The master node then takes the answers to all the sub-problems and combines them in some way to get the output - the answer to the problem it was originally trying to solve.