here's some code that might help (which I just wrote): GA for ordering 10 values spaced by 1.0. It starts with a population of 100 completely random alleles, which is exactly how your code starts.
The goal I gave the GA to solve was to order the values in increasing order with a separation of 1.0. It does this in the fitness function Eval_OrderedDistance
by by computing the standard deviation of each pair of samples from 1.0. As the fitness tends toward 0.0, the alleles should start to appear in sequential order.
Generation 0's fittest Chromosome was completely random, as were the rest of the Chromosomes. You can see the fitness value is very high (i.e., bad):
GEN: fitness (allele, ...)
0: 375.47460 (583.640, -4.215, -78.418, 164.228, -243.982, -250.237, 354.559, 374.306, 709.859, 115.323)
As the generations continue, the fitness (standard deviation from 1.0) decreases until it's nearly perfect in generation 100,000:
100: 68.11683 (-154.818, -173.378, -170.846, -193.750, -198.722, -396.502, -464.710, -450.014, -422.194, -407.162)
...
10000: 6.01724 (-269.681, -267.947, -273.282, -281.582, -287.407, -293.622, -302.050, -307.582, -308.198, -308.648)
...
99999: 0.67262 (-294.746, -293.906, -293.114, -292.632, -292.596, -292.911, -292.808, -292.039, -291.112, -290.928)
The interesting parts of the code are the fitness function:
// try to pack the aleles together spaced apart by 1.0
// returns the standard deviation of the samples from 1.0
static float Eval_OrderedDistance(Chromosome c) {
float sum = 0;
int n = c.alele.Length;
for(int i=1; i<n; i++) {
float diff = (c.alele[i] - c.alele[i-1]) - 1.0f;
sum += diff*diff; // variance from 1.0
}
return (float)Math.Sqrt(sum/n);
}
And the mutations. I used a simple crossover and a "completely mutate one allele":
Chromosome ChangeOne(Chromosome c) {
Chromosome d = c.Clone();
int i = rand.Next() % d.alele.Length;
d.alele[i] = (float)(rand.NextDouble()*2000-1000);
return d;
}
I used elitism to always keep one exact copy of the best Chromosome. Then generated 100 new Chromosomes using mutation and crossover.
It really sounds like you're calculating the variance of the fitness, which does of course tell you that the fitnesses in your population are all about the same. I've found that it's very important how you define your fitness function. The more granular the fitness function, the more you can discriminate between your Chromosomes. Obviously, your fitness function is returning similar values for completely different chromosomes, since your gen 0 returns a fitness variance of 68e-19.
Can you share your fitness calculation? Or what problem you're asking the GA to solve? I think that might help us help you.
[Edit: Adding Explicit Fitness Sharing / Niching]
I rethought this a bit and updated my code. If you're trying to maintain unique chromosomes, you have to compare their content (as others have mentioned). One way to do this would be to compute the standard deviation between them. If it's less than some threshold, you can consider them the same. From class Chromosome:
// compute the population standard deviation
public float StdDev(Chromosome other) {
float sum = 0.0f;
for(int i=0; i<alele.Length; i++) {
float diff = other.alele[i] - alele[i];
sum += diff*diff;
}
return (float)Math.Sqrt(sum);
}
I think Niching will give you what you'd like. It compares all the Chromosomes in the population to determine their similarity and assigns a "niche" value to each. The chromosomes are then "penalized" for belonging to a niche using a technique called Explicit Fitness Sharing. The fitness values are divided by the number of Chromosomes in each niche. So if you have three in niche group A (A,A,A) instead of that niche being 3 times as likely to be chosen, it's treated as a single entity.
I compared my sample with Explicit Fitness Sharing on and off. With a max STDDEV of 500 and Niching turned OFF, there were about 18-20 niches (so basically 5 duplicates of each item in a 100 population). With Niching turned ON, there were about 85 niches. Thats 85% unique Chromosomes in the population. In the output of my test, you can see the diversity after 17000 generations.
Here's the niching code:
// returns: total number of niches in this population
// max_stddev -- any two chromosomes with population stddev less than this max
// will be grouped together
int ComputeNiches(float max_stddev) {
List<int> niches = new List<int>();
// clear niches
foreach(var c in population) {
c.niche = -1;
}
// calculate niches
for(int i=0; i<population.Count; i++) {
var c = population[i];
if( c.niche != -1) continue; // niche already set
// compute the niche by finding the stddev between the two chromosomes
c.niche = niches.Count;
int count_in_niche = 1; // includes the curent Chromosome
for(int j=i+1; j<population.Count; j++) {
var d = population[j];
float stddev = c.StdDev(d);
if(stddev < max_stddev) {
d.niche = c.niche; // same niche
++count_in_niche;
}
}
niches.Add(count_in_niche);
}
// penalize Chromosomes by their niche size
foreach(var c in population) {
c.niche_scaled_fitness = c.scaled_fitness / niches[c.niche];
}
return niches.Count;
}
[Edit: post-analysis and update of Anton's code]
I know this probably isn't the right forum to address homework problems, but since I did the effort before knowing this, and I had a lot of fun doing it, I figure it can only be helpful to Anton.
Genotip.cs, Kromosom.cs, KromoMain.cs
This code maintains good diversity, and I was able in one run to get the "raw fitness" down to 47, which is in your case the average squared error. That was pretty close!
As noted in my comment, I'd like to try to help you in your programming, not just help you with your homework. Please read these analysis of your work.
As we expected, there was no need to make a "more diverse" population from the start. Just generate some completely random Kromosomes.
Your mutations and crossovers were highly destructive, and you only had a few of them. I added several new operators that seem to work better for this problem.
You were throwing away the best solution. When I got your code running with only Tournament Selection, there would be one Kromo that was 99% better than all the rest. With tournament selection, that best value was very likely to be forgotten. I added a bit of "elitism" which keeps a copy of that value for the next generation.
Consider object oriented techniques. Compare the re-write I sent you with my original code.
Don't duplicate code. You had the sampling parameters in two different classes.
Keep your code clean. There were several unused parts of code. Especially when submitting questions to SO, try to narrow it down, remove unused code, and do some cleaning up.
Comment your code! I've commented the re-work significantly. I know it's Serbian, but even a few comments will help someone else understand what you are doing and what you intended to do.
Overall, nice job implementing some of the more sophisticated things like Tournament Selection
Prefer double[] arrays instead of List. There's less overhead. Also, several of your List temp variables weren't even needed. Your structure
List temp = new List();
for(...) {
temp.add(value);
}
for(each value in temp) {
sum += value
}
average = sum / temp.Count
can easily be written as:
sum = 0
for(...) {
sum += value;
}
average = sum / count;
In several places you forgot to initialize a loop variable, which could have easily added to your problem. Something like this will cause serious problems, and it was in your fitness code along with one or two other places
double fit = 0;
for(each chromosome) {
// YOU SHOULD INITIALIZE fit HERE inside the LOOP
for(each allele) {
fit += ...;
}
fit /= count;
}
Good luck programming!