I ran into an interesting situation, and now am looking for how to do it intentionally. On my local single node setup, I ran 2 jobs simultaneously from the terminal screen. My both jobs use same reducer, they only have difference in map function (aggregation key - the group by), the output of both jobs was written to the output of first job (though second job did created its own folder, but it was empty). What I am working on is providing rollup aggregations across various levels, and this behavior is fascinating for me, that the aggregation output from two different levels are available to me in one single file (also perfectly sorted).
My question is how to achieve the same in real Hadoop cluster, where we have multiple data nodes i.e. I programmatically initiate multiple jobs, all accessing same input file, mapping the data differently, but using the same reducer, and the output is available in one single file, and not in 5 different output files.
Please advise.
I was taking a look at merge output files after reduce phase before I decided to ask my question.
Thanks and Kind regards,
Moiz Ahmed.