If you consider each attribute of your point class as a component of a vector, then your selection process is a region query. Your example of a string attribute being equal to something means that the region is actually a line in your data space. However, there won't be any sorting made on other attributes within that selection, you will have to implement it by yourself, but it should be relatively straightforward for octrees, which partition data in ordered regions.
As advocated in another answer, try existing standard solutions first. If you can find an of the shelf implementation of one of these data structures:
- R-tree
- KD tree
- BSP
- Octree, or more likely, a n dimensional version of the quadtree or octree principle (I will use the term octree herein to denote the general data structure)
then go for it. These are the data structures I recommend for spatial data management.
You could also use an embedded RDBMS capable of working with spatial data (they usually implement R-tree for spatial indexing), but it may not be interesting if your dataset isn't dynamic.
If your dataset falls within the 10000 entries range, then by today standards it isn't that large, so using simpler structures should suffice. In that perimeter, I would go first for a simple std::vector
, and use std::sort
and std::find
to filter the data in smaller set and sort it afterward.
I would probably try an ordered set or map on the most queried attribute in a second attempt, then do some benchmarks to pick the more performing solution.
For a more efficient one dimensional indexing algorithm (in essence, that`s what sets and maps are), you might want to try B-trees: there's C++ implementation available from google.
My third attempt would go toward an OpenCL solution (although if you are doing heavy OpenGL rendering, you might prefer doing the work on the CPU instead, but that depends on your framerate needs).
If your dataset is much larger, as it seems to be, then consider one of the more complex solutions I listed initially.
At any rate, without more details about your dataset and how you plan to use it, it will be difficult to provide a good solution, so the only real advice we can give is: try everthing you can and benchmark.