You know how every colour eventually turns white in an image if it's bright enough or sufficiently over-exposed? I'm trying to figure out a function to do this to apply to generated HDR images, in a realistic and pleasing looking way (using idealised camera performance as a reference I guess).
The problem the algorithm/function I want to obtain should solve is, let's say you have an orange pixel with the (linear RGB) values {1.0, 0.2, 0.0}. Everything is fine if you multiply each value by a factor of 1.0 or less, but let's say you multiply that pixel by 6, now you get {6.0, 1.2, 0.0}, what do you do with your out of range red and green value of 6.0 and 1.2? You could clip them which would give you {1.0, 1.0, 0.0}, which sadly is what Photoshop and 3DS Max seem to do, but it looks so very wrong as now your formerly orange pixel is yellow (so if you start with any saturated hue (meaning at least one channel is 0.0) you always end up with either magenta, yellow or cyan) and it will never become white.
I considered taking half of the excess of one channel and splitting it equally between the other channels, so for example {1.6, 0.5, 0.1} would become {1.0, 0.8, 0.4} but it's too simplistic and not very realistic. I strongly doubt that an acceptable solution could be anywhere near this trivial.
I'm sure there must have been research done on the topic, but I cannot find any relevant literature and sensitometry doesn't seem to be quite what I'm looking for.