The representation of the values changes due to contracts of the methods that convert numerical values to a String
, correspondingly java.lang.Float#toString(float)
and java.lang.Double#toString(double)
, while the actual value remains the same. There is a common part in Javadoc of both aforementioned methods that elaborates requirements to values' String
representation:
There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values
To illustrate the similarity of significant parts for values of both types, the following snippet can be run:
package com.my.sandbox.numbers;
public class FloatToDoubleConversion {
public static void main(String[] args) {
float f = 125.32f;
floatToBits(f);
double d = (double) f;
doubleToBits(d);
}
private static void floatToBits(float floatValue) {
System.out.println();
System.out.println("Float.");
System.out.println("String representation of float: " + floatValue);
int bits = Float.floatToIntBits(floatValue);
int sign = bits >>> 31;
int exponent = (bits >>> 23 & ((1 << 8) - 1)) - ((1 << 7) - 1);
int mantissa = bits & ((1 << 23) - 1);
System.out.println("Bytes: " + Long.toBinaryString(Float.floatToIntBits(floatValue)));
System.out.println("Sign: " + Long.toBinaryString(sign));
System.out.println("Exponent: " + Long.toBinaryString(exponent));
System.out.println("Mantissa: " + Long.toBinaryString(mantissa));
System.out.println("Back from parts: " + Float.intBitsToFloat((sign << 31) | (exponent + ((1 << 7) - 1)) << 23 | mantissa));
System.out.println(10D);
}
private static void doubleToBits(double doubleValue) {
System.out.println();
System.out.println("Double.");
System.out.println("String representation of double: " + doubleValue);
long bits = Double.doubleToLongBits(doubleValue);
long sign = bits >>> 63;
long exponent = (bits >>> 52 & ((1 << 11) - 1)) - ((1 << 10) - 1);
long mantissa = bits & ((1L << 52) - 1);
System.out.println("Bytes: " + Long.toBinaryString(Double.doubleToLongBits(doubleValue)));
System.out.println("Sign: " + Long.toBinaryString(sign));
System.out.println("Exponent: " + Long.toBinaryString(exponent));
System.out.println("Mantissa: " + Long.toBinaryString(mantissa));
System.out.println("Back from parts: " + Double.longBitsToDouble((sign << 63) | (exponent + ((1 << 10) - 1)) << 52 | mantissa));
}
}
In my environment, the output is:
Float.
String representation of float: 125.32
Bytes: 1000010111110101010001111010111
Sign: 0
Exponent: 110
Mantissa: 11110101010001111010111
Back from parts: 125.32
Double.
String representation of double: 125.31999969482422
Bytes: 100000001011111010101000111101011100000000000000000000000000000
Sign: 0
Exponent: 110
Mantissa: 1111010101000111101011100000000000000000000000000000
Back from parts: 125.31999969482422
This way, you can see that values' sign, exponent are the same, while its mantissa was extended retained its significant part (11110101010001111010111
) exactly the same.
The used extraction logic of floating point number parts: 1 and 2.