Sorry if this question is trivial, but I'm trying to figure out how to plot a certain type of natural cubic spline (NCS) in R and it's completely eluded me.
In a previous question I learned how to plot the NCS generated by the ns() command in ggplot, but I'm interested in how to plot a slightly different NCS generated the smooth.Pspline command in the pspline package. As far as I know this is the only package that automatically selects the proper smoothing penalty by CV for a given dataset.
Ideally I would be able to provide smooth.Pspline as a method to a stat_smooth layer in ggplot2. My current code is like:
plot <- ggplot(data_plot, aes(x=age, y=wOBA, color=playerID, group=playerID))
plot <- plot + stat_smooth(method = lm, formula = y~ns(x,4),se=FALSE)
I'd like to replace the "lm" formula with smooth.Pspline's functionality. I did a little bit of googling and found a solution to the very similar B-spline function smooth.spline, written by Hadley. But I haven't been able to adapt this to smooth.Pspline perfectly. Does anyone have experience with this?
Thanks so much!