The answer depends a little bit on how many rectangles you have. The brute force method checks your coordinates against each rectangular pair in turn:
found = false
for each r in rectangles:
if point.x > r.x1 && point.x < r.x2:
if point.y > r.y1 && point.y < r.y2
found = true
break
You can get more efficient by sorting the rectangles into regions, and looking at "bounding rectangles". You then do a binary search through a tree of ever-decreasing bounding rectangles. This takes a bit more work up front, but it makes the lookup O(ln(n)) rather than O(n) - for large collections of rectangles and many lookups, the performance improvement will be significant. You can see a version of this (which looks at intersection of a rectangle with a set of rectangles - but you easily adapt to "point within") in this earlier answer. More generally, look at the topic of quad trees which are exactly the kind of data structure you would need for a 2D problem like this.
A slightly less efficient (but faster) method would sort the rectangles by lower left corner (for example) - you then need to search only a subset of the rectangles.
If the coordinates are integer type, you could make a binary mask - then the lookup is a single operation (in your case this would require a 512MB lookup table). If your space is relatively sparsely populated (i.e. the probability of a "miss" is quite large) then you could consider using an undersampled bit map (e.g. using coordinates/8) - then map size drops to 8M, and if you have "no hit" you save yourself the expense of looking more closely. Of course you have to round down the left/bottom, and round up the top/right coordinates to make this work right.
Expanding a little bit with an example:
Imagine coordinates can be just 0 - 15 in x, and 0 - 7 in y. There are three rectangles (all [x1 y1 x2 y2]
: [2 3 4 5]
, [3 4 6 7]
and [7 1 10 5]
. We can draw these in a matrix (I mark the bottom left hand corner with the number of the rectangle - note that 1 and 2 overlap):
...xxxx.........
...xxxx.........
..xxxxx.........
..x2xxxxxxx.....
..1xx..xxxx.....
.......xxxx.....
.......3xxx.....
................
You can turn this into an array of zeros and ones - so that "is there a rectangle at this point" is the same as "is this bit set". A single lookup will give you the answer. To save space you could downsample the array - if there is still no hit, you have your answer, but if there is a hit you would need to check "is this real" - so it saves less time, and savings depend on sparseness of your matrix (sparser = faster). Subsampled array would look like this (2x downsampling):
.oxx....
.xxooo..
.oooxo..
...ooo..
I use x
to mark "if you hit this point, you are sure to be in a rectangle", and o
to say "some of these are a rectangle". Many of the points are now "maybe", and less time is saved. If you did more severe downsampling you might consider having a two-bit mask: this would allow you to say "this entire block is filled with rectangles" (i.e. - no further processing needed: the x
above) or "further processing needed" (like the o
above). This soon starts to be more complicated than the Q-tree approach...
Bottom line: the more sorting / organizing of the rectangles you do up front, the faster you can do the lookup.