16
String database[] = {'a', 'b', 'c'};

I would like to generate the following strings sequence, based on given database.

a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc
aaa
...

I can only think of a pretty "dummy" solution.

public class JavaApplication21 {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        char[] database = {'a', 'b', 'c'};

        String query = "a";
        StringBuilder query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);
            query = query_sb.toString();                    
            System.out.println(query);            
        }

        query = "aa";
        query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);    
            for (int b = 0; b < database.length; b++) {    
                query_sb.setCharAt(1, database[b]);    
                query = query_sb.toString();                    
                System.out.println(query);
            }
        }

        query = "aaa";
        query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);    
            for (int b = 0; b < database.length; b++) {    
                query_sb.setCharAt(1, database[b]);    
                for (int c = 0; c < database.length; c++) {                    
                    query_sb.setCharAt(2, database[c]);                        
                    query = query_sb.toString();                    
                    System.out.println(query);
                }
            }
        }
    }
}

The solution is pretty dumb. It is not scale-able in the sense that

  1. What if I increase the size of database?
  2. What if my final targeted print String length need to be N?

Is there any smart code, which can generate scale-able permutation and combination string in a really smart way?

Cheok Yan Cheng
  • 47,586
  • 132
  • 466
  • 875
  • In Python, it's very simple, haha. `print ''.join(query) for query in itertools.combinations_with_replacement(database, length) for length in range(1,N+1)` – justhalf Nov 15 '13 at 03:52

7 Answers7

19

You should check this answer: Getting every possible permutation of a string or combination including repeated characters in Java

To get this code:

public static String[] getAllLists(String[] elements, int lengthOfList)
{

    //lists of length 1 are just the original elements
    if(lengthOfList == 1) return elements; 
    else {
        //initialize our returned list with the number of elements calculated above
        String[] allLists = new String[(int)Math.pow(elements.length, lengthOfList)];

        //the recursion--get all lists of length 3, length 2, all the way up to 1
        String[] allSublists = getAllLists(elements, lengthOfList - 1);

        //append the sublists to each element
        int arrayIndex = 0;

        for(int i = 0; i < elements.length; i++){
            for(int j = 0; j < allSublists.length; j++){
                //add the newly appended combination to the list
                allLists[arrayIndex] = elements[i] + allSublists[j];
                arrayIndex++;
            }
        }
        return allLists;
    }
}

public static void main(String[] args){
    String[] database = {"a","b","c"};
    for(int i=1; i<=database.length; i++){
        String[] result = getAllLists(database, i);
        for(int j=0; j<result.length; j++){
            System.out.println(result[j]);
        }
    }
}

Although further improvement in memory could be made, since this solution generates all solution to memory first (the array), before we can print it. But the idea is the same, which is to use recursive algorithm.

justhalf
  • 8,960
  • 3
  • 47
  • 74
3

This smells like counting in binary:

  • 001
  • 010
  • 011
  • 100
  • 101
  • ...

My first instinct would be to use a binary counter as a "bitmap" of characters to generate those the possible values. However, there are several wonderful answer to related questions here that suggest using recursion. See

Community
  • 1
  • 1
dj_segfault
  • 11,957
  • 4
  • 29
  • 37
2

Java implementation of your permutation generator:-

public class Permutations {


    public static void permGen(char[] s,int i,int k,char[] buff) {
        if(i<k) {
            for(int j=0;j<s.length;j++) {

                buff[i] = s[j];
                permGen(s,i+1,k,buff);
            }
        }       
        else {

         System.out.println(String.valueOf(buff)); 

        }

    }

    public static void main(String[] args) {
        char[] database = {'a', 'b', 'c'};
        char[] buff = new char[database.length];
        int k = database.length;
        for(int i=1;i<=k;i++) {
            permGen(database,0,i,buff);
        }

}

}
Vikram Bhat
  • 6,106
  • 3
  • 20
  • 19
0

Ok, so the best solution to permutations is recursion. Say you had n different letters in the string. That would produce n sub problems, one for each set of permutations starting with each unique letter. Create a method permutationsWithPrefix(String thePrefix, String theString) which will solve these individual problems. Create another method listPermutations(String theString) a implementation would be something like

void permutationsWithPrefix(String thePrefix, String theString) {
   if ( !theString.length ) println(thePrefix + theString);
   for(int i = 0; i < theString.length; i ++ ) {
      char c = theString.charAt(i);
      String workingOn = theString.subString(0, i) + theString.subString(i+1);   
      permutationsWithPrefix(prefix + c, workingOn);
   }
} 

void listPermutations(String theString) {
   permutationsWithPrefix("", theString);
}
Jesse Nelson
  • 776
  • 8
  • 21
0

i came across this question as one of the interview question. Following is the solution that i have implemented for this problem using recursion.

public class PasswordCracker {

private List<String> doComputations(String inputString) {

    List<String> totalList =  new ArrayList<String>();
    for (int i = 1; i <= inputString.length(); i++) {

        totalList.addAll(getCombinationsPerLength(inputString, i));
    }
    return totalList;

}

private ArrayList<String> getCombinationsPerLength(
        String inputString, int i) {

    ArrayList<String> combinations = new ArrayList<String>();

    if (i == 1) {

        char [] charArray = inputString.toCharArray();
        for (int j = 0; j < charArray.length; j++) {
            combinations.add(((Character)charArray[j]).toString());
        }
        return combinations;
    }
    for (int j = 0; j < inputString.length(); j++) {

        ArrayList<String> combs = getCombinationsPerLength(inputString, i-1);
        for (String string : combs) {
            combinations.add(inputString.charAt(j) + string);
        }
    }

    return combinations;
}
public static void main(String args[]) {

    String testString = "abc";
    PasswordCracker crackerTest = new PasswordCracker();
    System.out.println(crackerTest.doComputations(testString));

}
}
DeepInJava
  • 1,871
  • 3
  • 16
  • 31
0

For anyone looking for non-recursive options, here is a sample for numeric permutations (can easily be adapted to char. numberOfAgents is the number of columns and the set of numbers is 0 to numberOfActions:

    int numberOfAgents=5;
    int numberOfActions = 8;
    byte[][]combinations = new byte[(int)Math.pow(numberOfActions,numberOfAgents)][numberOfAgents];

    // do each column separately
    for (byte j = 0; j < numberOfAgents; j++) {
        // for this column, repeat each option in the set 'reps' times
        int reps = (int) Math.pow(numberOfActions, j);

        // for each column, repeat the whole set of options until we reach the end
        int counter=0;
        while(counter<combinations.length) {
            // for each option
            for (byte i = 0; i < numberOfActions; i++) {
                // save each option 'reps' times
                for (int k = 0; k < reps; k++)
                    combinations[counter + i * reps + k][j] = i;
            }
            // increase counter by 'reps' times amount of actions
            counter+=reps*numberOfActions;
        }
    }

    // print
    for(byte[] setOfActions : combinations) {
        for (byte b : setOfActions)
            System.out.print(b);
        System.out.println();
    }
BlueMoon93
  • 2,910
  • 22
  • 39
0
// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!

import java.util.*;
public class Permutation {

    public static void main(String[] args) {
        Scanner in=new Scanner(System.in);
        System.out.println("ENTER A STRING");
        Set<String> se=find(in.nextLine());
        System.out.println((se));
    }
    public static Set<String> find(String s)
    {
        Set<String> ss=new HashSet<String>();
        if(s==null)
        {
            return null;
        }
        if(s.length()==0)
        {
            ss.add("");
        }
        else
        {
            char c=s.charAt(0);
            String st=s.substring(1);
            Set<String> qq=find(st);
            for(String str:qq)
            {
                for(int i=0;i<=str.length();i++)
                {
                    ss.add(comb(str,c,i));
                }
            }
        }
        return ss;

    }
    public static String comb(String s,char c,int i)
    {
        String start=s.substring(0,i);
        String end=s.substring(i);
        return start+c+end;
    }

}


// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!