Late answer, but I'm surprised a solution hasn't been posted yet that addresses the concerns outlined in the article linked in the (currently) accepted answer, namely that:
- Rounding checks equality with absolute tolerance (e.g. 0.0001 units if rounded to 4d.p.) which is rubbish when comparing different values on multiple orders of magnitude (so not just comparing to 0)
- Relative tolerance that scales with one of the numbers being compared meanwhile is not mentioned in the current answers, but performs well on non-zero comparisons (however will be bad at comparing to zero as the scaling blows up around then).
To solve this, I've taken inspiration from Python: PEP 485 -- A Function for testing approximate equality to implement the following (in a standard module):
Code
'@NoIndent: Don't want to lose our description annotations
'@Folder("Tests.Utils")
Option Explicit
Option Private Module
'Based on Python's math.isclose https://github.com/python/cpython/blob/17f94e28882e1e2b331ace93f42e8615383dee59/Modules/mathmodule.c#L2962-L3003
'math.isclose -> boolean
' a: double
' b: double
' relTol: double = 1e-09
' maximum difference for being considered "close", relative to the
' magnitude of the input values, e.g. abs(a - b)/(a OR b) < relTol
' absTol: double = 0.0
' maximum difference for being considered "close", regardless of the
' magnitude of the input values, e.g. abs(a - b) < absTol
'Determine whether two floating point numbers are close in value.
'Return True if a is close in value to b, and False otherwise.
'For the values to be considered close, the difference between them
'must be smaller than at least one of the tolerances.
'-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
'is, NaN is not close to anything, even itself. inf and -inf are
'only close to themselves.
'@Description("Determine whether two floating point numbers are close in value, accounting for special values in IEEE 754")
Public Function IsClose(ByVal a As Double, ByVal b As Double, _
Optional ByVal relTol As Double = 0.000000001, _
Optional ByVal absTol As Double = 0 _
) As Boolean
If relTol < 0# Or absTol < 0# Then
Err.Raise 5, Description:="tolerances must be non-negative"
ElseIf a = b Then
'Short circuit exact equality -- needed to catch two infinities of
' the same sign. And perhaps speeds things up a bit sometimes.
IsClose = True
ElseIf IsInfinity(a) Or IsInfinity(b) Then
'This catches the case of two infinities of opposite sign, or
' one infinity and one finite number. Two infinities of opposite
' sign would otherwise have an infinite relative tolerance.
'Two infinities of the same sign are caught by the equality check
' above.
IsClose = False
Else
'Now do the regular computation on finite arguments. Here an
' infinite tolerance will always result in the function returning True,
' since an infinite difference will be <= to the infinite tolerance.
'NaN has already been filtered out in the equality checks earlier.
On Error Resume Next 'This is to suppress overflow errors as we deal with infinity.
Dim diff As Double: diff = Abs(b - a)
If diff <= absTol Then
IsClose = True
ElseIf diff <= CDbl(Abs(relTol * b)) Then
IsClose = True
ElseIf diff <= CDbl(Abs(relTol * a)) Then
IsClose = True
End If
On Error GoTo 0
End If
End Function
'@Description "Checks if Number is IEEE754 +/- inf, won't raise an error"
Public Function IsInfinity(ByVal Number As Double) As Boolean
On Error Resume Next 'in case of NaN
IsInfinity = Abs(Number) = PosInf
On Error GoTo 0
End Function
'@Description "IEEE754 -inf"
Public Property Get NegInf() As Double
On Error Resume Next
NegInf = -1 / 0
On Error GoTo 0
End Property
'@Description "IEEE754 +inf"
Public Property Get PosInf() As Double
On Error Resume Next
PosInf = 1 / 0
On Error GoTo 0
End Property
'@Description "IEEE754 signaling NaN (sNaN)"
Public Property Get NaN() As Double
On Error Resume Next
NaN = 0 / 0
On Error GoTo 0
End Property
'@Description "IEEE754 quiet NaN (qNaN)"
Public Property Get QNaN() As Double
QNaN = -NaN
End Property
Updated to incorporate great feedback on Code Review from Cristian Buse
Examples
The IsClose
function can be used to check for absolute difference:
assert(IsClose(0, 0.0001233, absTol:= 0.001)) 'same to 3 d.p.?
... or relative difference:
assert(IsClose(1234.5, 1234.6, relTol:= 0.0001)) '0.01% relative difference?
... but generally you specify both and if either tolerance is met then the numbers are considered close. It has special handling of +-infinity which are only close to themselves, and NaN which is close to nothing (see the PEP for full justification, or my Code Review post where I'd love feedback on this code :)