It is known that 4 non-collinear, non-coplanar 3D points define a 3D sphere.
Is there an equivalent property/theorem for cylinder?
It is known that 4 non-collinear, non-coplanar 3D points define a 3D sphere.
Is there an equivalent property/theorem for cylinder?
For cylinder you need 5 points. But I am not EXACTLY sure if 5 points uniquely defines a cylinder.
Following references justifies this:
http://library.wolfram.com/infocenter/Conferences/7521/cylinder_5_points_computation.pdf
A cylinder has 5 degrees of freedom: 4 for the axis (a line in 3D space), 1 for the radius, so in principle 5 points are required and enough.
But there can be several solutions: taking five point that form a regular bipyramid (two tetrahedra with a common base), there are 6 solutions, by symmetry.
This question is much more interesting than it looks like at a first look. It is relatively easy to see how 5 points define a cylinder but not uniquely: you can pick 3 of such points to define a circular cross section and let the other two define the bases. However it is not difficult to see that the choice of the three first points is not unique. It also depends on whether "define" means that the points have to lie on the surface (in which case the two last point have to lie inside the unbounded cylinder defined by the previous three) or not.
I think there is no simple elegant statement like in the case of the sphere.
For a finite cylinder you need a total of 7 parameters.
A 3D line needs 4 parameters (minimum distance from origin, and 3 for orientation). Then from the point closest to the origin you need 2 distances defining the beginning and end of the cylinder. One more parameter is needed for the radius, and voila, you have a 3D cylinder in space defined.
You can also use two 3D points plus a radius which also needs 7 parameters.
For in infinite cylinder you need 5 parameters. 4 for the line and 1 for the radius.
Sticking to the exact vocabulary of the question, you only need two points (really one point and a scalar for the radius) for a sphere.
A cylinder needs no more that 3 points. Two to define the axis and end points, plus a 3rd (really, 2 points and a scalar) to get the radius.