In this answer I present three optimizations:
replacing the objects std::set
by boost::container::flat_set
for improved locality (and likely reallocation costs, since most object sets are <4 elements)
UPDATE In my final version below, simply replacing boost::container::flat_map
back with std::set
degraded performance of just find_range
by a factor ~2x and find_range_ex
by a factor of ~4x on my test system
replacing the object id std::string
by string_atom
(which is technically a char const*
but logically unique). This technique is similar to interned strings in various VM implementations (like Java/.NET).
NOTE: The current implementation of make_atom
is exceedingly simplistic and never frees atoms. You would potentially want to back the strings in a deque, use Boost Flyweights, a pool allocator or some combination of those to make it smarter. However, whether this is required depends on your use cases
replacing the map intersection with a equal_range
call, which saves the bulk of time by avoiding copying (large amounts of) data
_UPDATE When applying just this optimization in isolation the speed up is already 26~30x. Note that the memory usage is roughly double at ~20MiB compared to when including all three optimizations_
Volume and data efficiency
Before I start, I like to know what the data looks like. So, writing some code to parse that bmap.txt
input, we get:
Source On Coliru
Parsed ok
Histogram of 66425 input lines
d: 3367
f: 20613
p: 21222
v: 21223
ranges size: 6442450944
ranges iterative size: 21223
Min object set: 1.000000
Max object set: 234.000000
Average object set: 3.129859
Min interval width: 1024.000000
Max interval width: 2526265344.000000
Average interval width: 296.445177k
First: [0,1048576)
Last: [3916185600,6442450944)
String atoms: 23904 unique in 66425 total
Atom efficiency: 35.986451%
As you can see the sets are usually ~3 items, and many are duplicated.
Using the make_atom
object naming method with boost::flat_set
reduced memory allocation from ~15GiB to ~10Gib.
This optimization also reduces string comparison to pointer comparison for set insertion and the Combiner strategy of the interval_map
, so for larger data sets this has the potential to have a lot of speedup.
Query efficiency
Query performance is indeed severely crippled by the partial copy of the input.
Don't copy, instead view the overlapping range, simply by replacing:
const ranges r = *map & window;
ranges::const_iterator iter = r.begin ();
while (iter != r.end ()) {
with
auto r = map->equal_range(window);
ranges::const_iterator iter = r.first;
while (iter != r.second) {
On my system running 10000 identical randomized queries with both versions results in a speedup of 32x:
10000 'random' OLD lookups resulted in 156729884 callbacks in 29148ms
10000 'random' NEW lookups resulted in 156729884 callbacks in 897ms
real 0m31.715s
user 0m31.664s
sys 0m0.012s
The runtime is now dominated by the parsing/statistics. Full benchmark code is here: On Coliru
#define BOOST_RESULT_OF_USE_DECTYPE
#define BOOST_SPIRIT_USE_PHOENIX_V3
/* virt-bmap examiner plugin
* Copyright (C) 2014 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <assert.h>
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/interval_map.hpp>
#include <boost/container/flat_set.hpp>
using namespace std;
/* Maps intervals (uint64_t, uint64_t) to a set of strings, where each
* string represents an object that covers that range.
*/
static size_t atoms_requested = 0;
static size_t atoms_unique_created = 0;
using string_atom = const char*;
string_atom make_atom(std::string&& s)
{
static std::set<std::string> s_atoms;
atoms_requested += 1;
auto it = s_atoms.find(s);
if (it != s_atoms.end())
return it->c_str();
atoms_unique_created += 1;
return s_atoms.insert(std::move(s)).first->c_str();
}
typedef boost::container::flat_set<string_atom> objects;
typedef boost::icl::interval_map<uint64_t, objects> ranges;
ranges*
new_ranges (void)
{
return new ranges ();
}
void
free_ranges (ranges *mapv)
{
ranges *map = (ranges *) mapv;
delete map;
}
extern "C" void
insert_range (void *mapv, uint64_t start, uint64_t end, const char *object)
{
ranges *map = (ranges *) mapv;
objects obj_set;
obj_set.insert (obj_set.end(), object);
map->add (std::make_pair (boost::icl::interval<uint64_t>::right_open (start, end), // SEHE added std::
obj_set));
}
extern "C" void
iter_range (void *mapv, void (*f) (uint64_t start, uint64_t end, const char *object, void *opaque), void *opaque)
{
ranges *map = (ranges *) mapv;
ranges::iterator iter = map->begin ();
while (iter != map->end ()) {
boost::icl::interval<uint64_t>::type range = iter->first;
uint64_t start = range.lower ();
uint64_t end = range.upper ();
objects obj_set = iter->second;
objects::iterator iter2 = obj_set.begin ();
while (iter2 != obj_set.end ()) {
f (start, end, *iter2/*->c_str ()*/, opaque); // SEHE
iter2++;
}
iter++;
}
}
extern "C" void
find_range (void const *mapv, uint64_t start, uint64_t end, void (*f) (uint64_t start, uint64_t end, const char *object, void *opaque), void *opaque)
{
const ranges *map = (const ranges *) mapv;
boost::icl::interval<uint64_t>::type window;
window = boost::icl::interval<uint64_t>::right_open (start, end);
const ranges r = *map & window;
ranges::const_iterator iter = r.begin ();
while (iter != r.end ()) {
boost::icl::interval<uint64_t>::type range = iter->first;
uint64_t start = range.lower ();
uint64_t end = range.upper ();
objects obj_set = iter->second;
objects::iterator iter2 = obj_set.begin ();
while (iter2 != obj_set.end ()) {
f (start, end, *iter2/*->c_str ()*/, opaque); // SEHE
iter2++;
}
iter++;
}
}
extern "C" void
find_range_ex (void const *mapv, uint64_t start, uint64_t end, void (*f) (uint64_t start, uint64_t end, const char *object, void *opaque), void *opaque)
{
const ranges *map = (const ranges *) mapv;
boost::icl::interval<uint64_t>::type window;
window = boost::icl::interval<uint64_t>::right_open (start, end);
#if 0
const ranges r = *map & window;
ranges::const_iterator iter = r.begin ();
while (iter != r.end ()) {
#else
auto r = map->equal_range(window);
ranges::const_iterator iter = r.first;
while (iter != r.second) {
#endif
boost::icl::interval<uint64_t>::type range = iter->first;
uint64_t start = range.lower ();
uint64_t end = range.upper ();
objects obj_set = iter->second;
objects::iterator iter2 = obj_set.begin ();
while (iter2 != obj_set.end ()) {
f (start, end, *iter2/*->c_str ()*/, opaque); // SEHE
iter2++;
}
iter++;
}
}
#include <memory>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <fstream>
#include <chrono>
std::map<char, size_t> histo;
bool insert_line_of_input(ranges& bmap_data, uint64_t b, uint64_t e, char type, std::string& object) {
if (!object.empty())
histo[type]++;
//std::cout << std::hex << b << " " << e << " " << type << " " << object << "\n";
#if 0
object.insert(object.begin(), ':');
object.insert(object.begin(), type);
#endif
insert_range(&bmap_data, b, e, make_atom(std::move(object)));
return true;
}
std::vector<std::pair<uint64_t, uint64_t> > generate_test_queries(ranges const& bmap_data, size_t n) {
std::vector<std::pair<uint64_t, uint64_t> > queries;
queries.reserve(n);
for (size_t i = 0; i < n; ++i)
{
auto start = (static_cast<uint64_t>(rand()) * rand()) % bmap_data.size();
auto end = start + rand();
queries.emplace_back(start,end);
}
return queries;
}
ranges read_mapfile(const char* fname) {
std::ifstream ifs(fname);
boost::spirit::istream_iterator f(ifs >> std::noskipws), l;
ranges bmap_data;
namespace phx = boost::phoenix;
using namespace boost::spirit::qi;
uint_parser<uint64_t, 16> offset;
if (!phrase_parse(f,l,
("1 " >> offset >> offset >> char_("pvdf") >> as_string[lexeme[+graph] >> attr('/') >> lexeme[*~char_("\r\n")]])
[ _pass = phx::bind(insert_line_of_input, phx::ref(bmap_data), _1, _2, _3, _4) ] % eol >> *eol,
blank))
{
exit(255);
} else
{
std::cout << "Parsed ok\n";
}
if (f!=l)
std::cout << "Warning: remaining input '" << std::string(f,l) << "\n";
return bmap_data;
}
void report_statistics(ranges const& bmap_data) {
size_t total = 0;
for (auto e : histo) total += e.second;
std::cout << "Histogram of " << total << " input lines\n";
for (auto e : histo)
std::cout << e.first << ": " << e.second << "\n";
namespace ba = boost::accumulators;
ba::accumulator_set<double, ba::stats<ba::tag::mean, ba::tag::max, ba::tag::min> >
object_sets, interval_widths;
for (auto const& r : bmap_data)
{
auto width = r.first.upper() - r.first.lower();
assert(width % 1024 == 0);
interval_widths(width);
object_sets(r.second.size());
}
std::cout << std::fixed;
std::cout << "ranges size: " << bmap_data.size() << "\n";
std::cout << "ranges iterative size: " << bmap_data.iterative_size() << "\n";
std::cout << "Min object set: " << ba::min(object_sets) << "\n" ;
std::cout << "Max object set: " << ba::max(object_sets) << "\n" ;
std::cout << "Average object set: " << ba::mean(object_sets) << "\n" ;
std::cout << "Min interval width: " << ba::min(interval_widths) << "\n" ;
std::cout << "Max interval width: " << ba::max(interval_widths) << "\n" ;
std::cout << "Average interval width: " << ba::mean(interval_widths)/1024.0 << "k\n" ;
std::cout << "First: " << bmap_data.begin()->first << "\n" ;
std::cout << "Last: " << bmap_data.rbegin()->first << "\n" ;
std::cout << "String atoms: " << atoms_unique_created << " unique in " << atoms_requested << " total\n";
std::cout << "Atom efficiency: " << (atoms_unique_created*100.0/atoms_requested) << "%\n";
}
void perform_comparative_benchmarks(ranges const& bmap_data, size_t number_of_queries) {
srand(42);
auto const queries = generate_test_queries(bmap_data, number_of_queries);
using hrc = std::chrono::high_resolution_clock;
{
auto start = hrc::now();
size_t callbacks = 0;
for (auto const& q: queries)
{
find_range(&bmap_data, q.first, q.second,
[](uint64_t start, uint64_t end, const char *object, void *opaque) {
++(*static_cast<size_t*>(opaque));
}, &callbacks);
}
std::cout << number_of_queries << " 'random' OLD lookups resulted in " << callbacks
<< " callbacks in " << std::chrono::duration_cast<std::chrono::milliseconds>((hrc::now()-start)).count() << "ms\n";
}
{
auto start = hrc::now();
size_t callbacks = 0;
for (auto const& q: queries)
{
find_range_ex(&bmap_data, q.first, q.second,
[](uint64_t start, uint64_t end, const char *object, void *opaque) {
++(*static_cast<size_t*>(opaque));
}, &callbacks);
}
std::cout << number_of_queries << " 'random' NEW lookups resulted in " << callbacks
<< " callbacks in " << std::chrono::duration_cast<std::chrono::milliseconds>((hrc::now()-start)).count() << "ms\n";
}
}
int main() {
auto bmap = read_mapfile("bmap.txt");
report_statistics(bmap);
perform_comparative_benchmarks(bmap, 1000);
#if 0 // to dump ranges to console
for (auto const& r : bmap)
{
std::cout << r.first << "\t" << r.second.size() << "\t";
std::copy(r.second.begin(), r.second.end(), std::ostream_iterator<std::string>(std::cout, "\t"));
std::cout << "\n";
}
#endif
}