I have a series that looks like this:
delivery
2007-04-26 706 23
2007-04-27 705 10
706 1089
708 83
710 13
712 51
802 4
806 1
812 3
2007-04-29 706 39
708 4
712 1
2007-04-30 705 3
706 1016
707 2
...
2014-11-04 1412 53
1501 1
1502 1
1512 1
2014-11-05 1411 47
1412 1334
1501 40
1502 433
1504 126
1506 100
1508 7
1510 6
1512 51
1604 1
1612 5
Length: 26255, dtype: int64
where the query is: df.groupby([df.index.date, 'delivery']).size()
For each day, I need to pull out the delivery number which has the most volume. I feel like it would be something like:
df.groupby([df.index.date, 'delivery']).size().idxmax(axis=1)
However, this just returns me the idxmax for the entire dataframe; instead, I need the second-level idmax (not the date but rather the delivery number) for each day, not the entire dataframe (ie. it returns a vector).
Any ideas on how to accomplish this?