On a job for a customer, I am locating items within a grayscale scene with nonuniform background illumination. Once the items are located, I need to do another search within each one for details. The items are easy enough to locate by masking with the output of a variance filter; and within the items, if the threshold is correct, the details are easy to locate as well. But the mean and contrast of these items varies substantially.
I played around with threshold calculation for a while, and none of the techniques I implemented is perfect; but the one that turns out simplest, as accurate as any other, and quite low cost, is to take the mean pixel value and add one standard deviation.
My question is: is there some analytical way to defend this calculation other than "it works well"? I mean, I did sort of fall on this technique accidentally (only later did I find this answer), and using it seems arbitrary.