Circle
For the simple case of a circle, you can determine whether the mouse is inside using the distance formula. For example:
# checks whether pt1 is in circ
def inCircle(pt1, circ):
# get the distance between pt1 and circ using the
# distance formula
dx = pt1.getX() - circ.getCenter().getX()
dy = pt1.getY() - circ.getCenter().getY()
dist = math.sqrt(dx*dx + dy*dy)
# check whether the distance is less than the radius
return dist <= circ.getRadius()
def main():
win = GraphWin("Click Speed", 700, 700)
# create a simple circle
circ = Circle(Point(350,350),50)
circ.setFill("red")
circ.draw(win)
while True:
mouse = win.getMouse()
if inCircle(mouse,circ):
print ("Good job")
main()
Oval
For the more advanced example of an ellipse we will need to use a formula found here. Here is the function implemting that:
def inOval(pt1, oval):
# get the radii
rx = abs(oval.getP1().getX() - oval.getP2().getX())/2
ry = abs(oval.getP1().getY() - oval.getP2().getY())/2
# get the center
h = oval.getCenter().getX()
k = oval.getCenter().getY()
# get the point
x = pt1.getX()
y = pt1.getY()
# use the formula
return (x-h)**2/rx**2 + (y-k)**2/ry**2 <= 1
Polygon
For a polygon of abitrary shape we need to reference this. I have converted that to a python equivalent for you. Check the link to see why it works because I am honestly not sure
def inPoly(pt1, poly):
points = poly.getPoints()
nvert = len(points) #the number of vertices in the polygon
#get x and y of pt1
x = pt1.getX()
y = pt1.getY()
# I don't know why this works
# See the link I provided for details
result = False
for i in range(nvert):
# note: points[-1] will give you the last element
# convenient!
j = i - 1
#get x and y of vertex at index i
vix = points[i].getX()
viy = points[i].getY()
#get x and y of vertex at index j
vjx = points[j].getX()
vjy = points[j].getY()
if (viy > y) != (vjy > y) and (x < (vjx - vix) * (y - viy) / (vjy - viy) + vix):
result = not result
return result