Something like this?
template<class Key, class Value, template<class...>class Storage=std::vector>
struct flat_map {
struct kv {
Key k;
Value v;
template<class K, class V>
kv( K&& kin, V&& vin ):k(std::forward<K>(kin)), v(std::forward<V>(vin)){}
};
using storage_t = Storage<kv>;
storage_t storage;
// TODO: adl upgrade
using iterator=decltype(std::begin(std::declval<storage_t&>()));
using const_iterator=decltype(std::begin(std::declval<const storage_t&>()));
// boilerplate:
iterator begin() {
using std::begin;
return begin(storage);
}
const_iterator begin() const {
using std::begin;
return begin(storage);
}
const_iterator cbegin() const {
using std::begin;
return begin(storage);
}
iterator end() {
using std::end;
return end(storage);
}
const_iterator end() const {
using std::end;
return end(storage);
}
const_iterator cend() const {
using std::end;
return end(storage);
}
size_t size() const {
return storage.size();
}
bool empty() const {
return storage.empty();
}
// these only have to be valid if called:
void reserve(size_t n) {
storage.reserve(n);
}
size_t capacity() const {
return storage.capacity();
}
// map-like interface:
// TODO: SFINAE check for type of key
template<class K>
Value& operator[](K&& k){
auto it = find(k);
if (it != end()) return it->v;
storage.emplace_back( std::forward<K>(k), Value{} );
return storage.back().v;
}
private: // C++14, but you can just inject the lambda at point of use in 11:
template<class K>
auto key_match( K& k ) {
return [&k](kv const& kv){
return kv.k == k;
};
}
public:
template<class K>
iterator find(K&& k) {
return std::find_if( begin(), end(), key_match(k) );
}
template<class K>
const_iterator find(K&& k) const {
return const_cast<flat_map*>(this)->find(k);
}
// iterator-less query functions:
template<class K>
Value* get(K&& k) {
auto it = find(std::forward<K>(k));
if (it==end()) return nullptr;
return std::addressof(it->v);
}
template<class K>
Value const* get(K&& k) const {
return const_cast<flat_map*>(this)->get(std::forward<K>(k));
}
// key-based erase: (SFINAE should be is_comparible, but that doesn't exist)
template<class K, class=std::enable_if_t<std::is_converible<K, Key>{}>>
bool erase(K&& k) {
auto it = std::remove(
storage.begin(), storage.end(), key_match(std::forward<K>(k))
);
if (it == storage.end()) return false;
storage.erase( it, storage.end() );
return true;
}
// classic erase, for iterating:
iterator erase(const_iterator it) {
return storage.erase(it);
}
template<class K2, class V2,
class=std::enable_if_t<
std::is_convertible< K2, Key >{}&&
std::is_convertible< V2, Value >{}
>
>
void set( K2&& kin, V2&& vin ) {
auto it = find(kin);
if (it != end()){
it->second = std::forward<V2>(vin);
return;
} else {
storage.emplace_back( std::forward<K2>(kin), std::forward<V2>(vin) );
}
}
};
I left the container type as a template argument, so you can use a SBO vector-like structure if you choose.
In theory, I should expose a template parameter for replacing equals on the keys. I did, however, make the key-search functions transparent.