I am trying to create a color wheel in Python, preferably using Matplotlib. The following works OK:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
xval = np.arange(0, 2*pi, 0.01)
yval = np.ones_like(xval)
colormap = plt.get_cmap('hsv')
norm = mpl.colors.Normalize(0.0, 2*np.pi)
ax = plt.subplot(1, 1, 1, polar=True)
ax.scatter(xval, yval, c=xval, s=300, cmap=colormap, norm=norm, linewidths=0)
ax.set_yticks([])
However, this attempt has two serious drawbacks.
First, when saving the resulting figure as a vector (figure_1.svg), the color wheel consists (as expected) of 621 different shapes, corresponding to the different (x,y) values being plotted. Although the result looks like a circle, it isn't really. I would greatly prefer to use an actual circle, defined by a few path points and Bezier curves between them, as in e.g. matplotlib.patches.Circle
. This seems to me the 'proper' way of doing it, and the result would look nicer (no banding, better gradient, better anti-aliasing).
Second (relatedly), the final plotted markers (the last few before 2*pi
) overlap the first few. It's very hard to see in the pixel rendering, but if you zoom in on the vector-based rendering you can clearly see the last disc overlap the first few.
I tried using different markers (.
or |
), but none of them go around the second issue.
Bottom line: can I draw a circle in Python/Matplotlib which is defined in the proper vector/Bezier curve way, and which has an edge color defined according to a colormap (or, failing that, an arbitrary color gradient)?