A question following this post. I have the following data:
- x1, disease symptom
- y1, another disease symptom
I fitted the x1/y1 data with a Deming regression with vr (or sdr) option set to 1. In other words, the regression is a Total Least Squares regression, i.e. orthogonal regression. See previous post for the graph.
x1=c(24.0,23.9,23.6,21.6,21.0,20.8,22.4,22.6,
21.6,21.2,19.0,19.4,21.1,21.5,21.5,20.1,20.1,
20.1,17.2,18.6,21.5,18.2,23.2,20.4,19.2,22.4,
18.8,17.9,19.1,17.9,19.6,18.1,17.6,17.4,17.5,
17.5,25.2,24.4,25.6,24.3,24.6,24.3,29.4,29.4,
29.1,28.5,27.2,27.9,31.5,31.5,31.5,27.8,31.2,
27.4,28.8,27.9,27.6,26.9,28.0,28.0,33.0,32.0,
34.2,34.0,32.6,30.8)
y1=c(100.0,95.5,93.5,100.0,98.5,99.5,34.8,
45.8,47.5,17.4,42.6,63.0,6.9,12.1,30.5,
10.5,14.3,41.1, 2.2,20.0,9.8,3.5,0.5,3.5,5.7,
3.1,19.2,6.4, 1.2, 4.5, 5.7, 3.1,19.2, 6.4,
1.2,4.5,81.5,70.5,91.5,75.0,59.5,73.3,66.5,
47.0,60.5,47.5,33.0,62.5,87.0,86.0,77.0,
86.0,83.0,78.5,83.0,83.5,73.0,69.5,82.5,78.5,
84.0,93.5,83.5,96.5,96.0,97.5)
x11()
plot(x1,y1,xlim=c(0,35),ylim=c(0,100))
library(MethComp)
dem_reg <- Deming(x1, y1)
abline(dem_reg[1:2], col = "green")
I would like to know how much x1 helps to predict y1:
- normally, I’d go for a R-squared, but it does not seem to be relevant; although another mathematician told me he thinks a R-squared may be appropriate. And this page suggests to calculate a Pearson product-moment correlation coefficient, which is R I believe?
- partially related, there is possibly a tolerance interval. I could calculated it with R ({tolerance} package or code shown in the post), but it is not exactly what I am searching for.
Does someone know how to calculate a goodness of fit for Deming regression, using R? I looked at MetchComp pdf but could not find it (perhaps missed it though).
EDIT: following Gaurav's answers about confidence interval: R code
Firstly: confidence intervals for parameters
library(mcr)
MCR_reg=mcreg(x1,y1,method.reg="Deming",error.ratio=1,method.ci="analytical")
getCoefficients(MCR_reg)
Secondly: confidence intervals for predicted values
# plot of data
x11()
plot(x1,y1,xlim=c(0,35),ylim=c(0,100))
# Deming regression using functions from {mcr}
library(mcr) MCR_reg=mcreg(x1,y1,method.reg="Deming",error.ratio=1,method.ci="analytical")
MCR_intercept=getCoefficients(MCR_reg)[1,1]
MCR_slope=getCoefficients(MCR_reg)[2,1]
# CI for predicted values
x_to_predict=seq(0,35)
predicted_values=MCResultAnalytical.calcResponse(MCR_reg,x_to_predict,alpha=0.05)
CI_low=predicted_values[,4]
CI_up=predicted_values[,5]
# plot regression line and CI for predicted values
abline(MCR_intercept,MCR_slope, col="red")
lines(x_to_predict,CI_low,col="royalblue",lty="dashed")
lines(x_to_predict,CI_up,col="royalblue",lty="dashed")
# comments
text(7.5,60, "Deming regression", col="red")
text(7.5,40, "Confidence Interval for", col="royalblue")
text(7.5,35, "Predicted values - 95%", col="royalblue")
EDIT 2 Topic moved to Cross Validated: https://stats.stackexchange.com/questions/167907/deming-orthogonal-regression-measuring-goodness-of-fit