Given N
points in a map of edges Map<Point, List<Edge>>
, it's possible to get the polygons formed by these edges in O(N log N)
?
What I know is that you have to walk all the vertices and get the edges containing that vertex as a starting point. These are edges of a voronoi diagram, and each vertex has, at most, 3 artists containing it. So, in the map, the key is a vertex, and the value is a list where the vertex is the start node.
For example:
Points: a,b,c,d,e,f,g
Edges: [a,b]; [a,c]; [a,d], [b,c], [d,e], [e,g], [g,f]
My idea is to iterate the map counterclockwise until I get the initial vertex. That is a polygon, then I put it in a list of polygons and keep looking for others. The problem is I do not want to overcome the complexity O(N log N)
Thanks!