1

## when i submit my task to do some query from mysql to yarn by using spark's cluster mode like below: ##

./spark-submit --class org.com.scala.test.ScalaTestFile --master yarn --deploy-mode cluster --driver-memory 8g --executor-memory 5g  --jars /usr/local/spark/lib/datanucleus-api-jdo-3.2.6.jar,/usr/local/spark/lib/datanucleus-core-3.2.10.jar,/usr/local/spark/lib/datanucleus-rdbms-3.2.9.jar,/usr/local/spark/lib/mysql-connector-java-5.1.26-bin.jar /data/tmp/snodawn/svn/scalaScript/scalaMavenTest/out/artifacts/scalaMavenTest_jar/scalaMavenTest.jar

- org.com.scala.test.ScalaTestFile is to query large amount of data in mysql(which for about 1 billion lines), and save it to hive :

val conf = new SparkConf().setAppName("ScalaTestFile")

val spark = new SparkContext(conf)

val sqlContext = new SQLContext(spark)

val hiveContext = new HiveContext(spark);

val reader = hiveContext.read.format("jdbc")

val url="jdbc:mysql://xx.xx.xx.xx:3307/databases"

reader.option("url",url)

reader.option("driver","com.mysql.jdbc.Driver")

reader.option("user","admin")

reader.option("password","admin")

reader.option("dbtable","(select * from gold) as a")

val df = reader.load()

val nTable = df.toDF();

val nWrite = nTable.write

hiveContext.sql("use testment")

nWrite.saveAsTable("gold_test")

- the task will be failed after running with such error:

16/02/24 18:46:43 INFO DAGScheduler: Job 0 failed: saveAsTable at ScalaTestFile.scala:88, took 1697.970350 s
16/02/24 18:46:43 ERROR InsertIntoHadoopFsRelation: Aborting job.
Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
    at org.apache.spark.sql.hive.execution.CreateMetastoreDataSourceAsSelect.run(commands.scala:258)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:251)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:221)
    at org.com.scala.test.ScalaTestFile$.main(ScalaTestFile.scala:88)
    at org.com.scala.test.ScalaTestFile.main(ScalaTestFile.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:542)
16/02/24 18:46:44 ERROR DefaultWriterContainer: Job job_201602241818_0000 aborted.
16/02/24 18:46:44 ERROR ApplicationMaster: User class threw exception: org.apache.spark.SparkException: Job aborted.
org.apache.spark.SparkException: Job aborted.
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:156)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.hive.execution.CreateMetastoreDataSourceAsSelect.run(commands.scala:258)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:251)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:221)
    at org.com.scala.test.ScalaTestFile$.main(ScalaTestFile.scala:88)
    at org.com.scala.test.ScalaTestFile.main(ScalaTestFile.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:542)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, slave4.4399data.com): ExecutorLos
tFailure (executor 4 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 122713 ms
Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)
    ... 33 more
16/02/24 18:46:44 INFO ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: org.apache.spark.SparkException: Job aborted.)
  • it seems that because it needs a log of time for querying from mysql and there returns no responses for a long time, this application finishes with failed status.

so, how can i solve my problem of querying from mysql for getting large amount of data by using spark?

ps, when i use java to do such query, i will do it like this:

Connection conn = DriverManager.getConnection(hiveConnectString, username, password);

com.mysql.jdbc.Statement statement = (com.mysql.jdbc.Statement)conn.createStatement();

statement.enableStreamingResults();

statement.executeUpdate("select * from gold")

so, is there a solution in spark to handling big data querying?

snodawn
  • 51
  • 1
  • 4

0 Answers0