You can tighten up what you have quite a bit as follows:
delete_last(L, L1) :-
append(L1, [_], L).
delete_first([_|L], L).
% No need to check length of 1, since we only need to check
% if L = [X] in the caller, so we'll eliminate this predicate
%check_len(L) :-
% length(L, 1). % No need for an extra variable to check length is 1
% Clauses that yield false are not needed since clauses already fail if not true
% So you can just remove those
%
delete_both([X], X) :-
write('MidElement').
% Here you need to fix the logic in your main clause
% You are deleting the first element of the list, then the last element
% from that result and checking if the length is 1.
delete_both(L, X) :-
delete_first(L, L1), % Remove first and last elements from L
delete_last(L1, LT),
( LT = [X] % Check for length of 1
-> true
; delete_both(LT, X) % otherwise, X is result of delete_both(LT, X)
).
With results:
| ?- delete_both([a,b,c,d,e], X).
X = c
yes
| ?- delete_both([a,b,c,d,e,f], X).
no
A DCG solution also works well here:
% X is the middle if it is flanked by two sequences of the same length
%
middle(X) --> seq(N), [X], seq(N).
seq(0) --> [].
seq(N) --> [_], { N #= N1 + 1 }, seq(N1).
middle(List, X) :- phrase(middle(X), List).
With results:
| ?- middle([a,b,c,d,e], X).
X = c ? ;
(1 ms) no
| ?- middle(L, a).
L = [a] ? ;
L = [_,a,_] ? ;
L = [_,_,a,_,_] ?
...
Another possible solution is to use SWI Prolog's
append/2
predicate, which appends a list of lists (assuming you're using SWI):
middle(L, X) :-
same_length(Left, Right),
append([Left, [X], Right], L).
same_length([], []).
same_length([_|T1], [_|T2]) :- same_length(T1, T2).
In all of the above solutions, the predicate fails if the list has an even number of elements. Since that's what your original solution does, I assumed that's what is required. If there is a specific requirement for even lists, that needs to be stated clearly.