Another interesting solution is to consider this predicate for splitting a list in half:
half(List, Left, Right) :-
half(List, List, Left, Right).
half(L, [], [], L).
half(L, [_], [], L).
half([H|T], [_,_|T2], [H|Left], Right) :-
half(T, T2, Left, Right).
This predicate divides an even list into two equal halves, or an odd list into two pieces where the right half has one more element than the left. It does so by reducing the original list, via the second argument, by two elements, each recursive call, while at the same time reducing the original list by one element each recursive call via the first argument. When it recurses down to the second argument being zero or one elements in length, then the first argument represents the half that's left, which is the right-hand list.
Example results for half/3
are:
| ?- half([a,b,c], L, R).
L = [a]
R = [b,c] ? a
(1 ms) no
| ?- half([a,b,c,d], L, R).
L = [a,b]
R = [c,d] ? a
no
| ?-
We can't quite use this to easily find the middle element because, in the even case, we want the last element of the left hand list. If we could bias the right-hand list by an extra element, we could then pick off the head of the right-hand half as the "middle" element. We can accomplish this using the deleteLast/2
here:
middle([X], X).
middle(List, Middle) :-
deleteLast(List, ListWithoutLast),
half(ListWithoutLast, _, [Middle|_]).
The head of the right half list of the original list, with the last element deleted, is the "middle" element. We can also simply half/3
and combine it with middle/2
since we don't really need everything half/3
does (e.g., we don't need the left-hand list, or the tail of the right hand list):
middle([X], X).
middle(List, Middle) :-
deleteLast(List, ListWithoutLast),
middle(ListWithoutLast, ListWithoutLast, Middle).
middle([M|_], [], M).
middle([M|_], [_], M).
middle([_|T], [_,_|T2], Right) :-
middle(T, T2, Right).
Another approach would be to modify
half/3
to bias the splitting of the original list in half toward the right-hand half, which eliminates the need for using
deleteLast/2
.
modified_half(List, Left, Right) :-
modified_half(List, List, Left, Right).
modified_half(L, [_], [], L).
modified_half(L, [_,_], [], L).
modified_half([H|T], [_,_,X|T2], [H|Left], Right) :-
modified_half(T, [X|T2], Left, Right).
This will bias the right hand list to have an extra element at the "expense" of the left:
| ?- modified_half([a,b,c,d,e], L, R).
L = [a,b]
R = [c,d,e] ? a
no
| ?- modified_half([a,b,c,d,e,f], L, R).
L = [a,b]
R = [c,d,e,f] ? a
no
| ?-
Now we can see that the middle element, per the original definition, is just the head of the right hand list. We can create a new definition for middle/2
using the above. As we did before with half/3
, we can ignore everything but the head in the right half, and we can eliminate the left half since we don't need it, and create a consolidated middle/2
predicate:
middle(List, Middle) :-
middle(List, List, Middle).
middle([M|_], [_,_], M).
middle([M|_], [_], M).
middle([_|T], [_,_,X|T2], Middle) :-
middle(T, [X|T2], Middle).
This reduces the original list down one element at a time (first argument) and two elements at a time (second argument) until the second argument is reduced to one or two elements. It then considers the head first argument to be the middle element:
This gives:
| ?- middle([a,b,c], M).
M = b ? ;
no
| ?- middle([a,b,c,d], M).
M = b ? ;
no
| ?- middle(L, M).
L = [M,_] ? ;
L = [M] ? ;
L = [_,M,_,_] ? ;
L = [_,M,_] ? ;
L = [_,_,M,_,_,_] ? ;
L = [_,_,M,_,_] ? ;
L = [_,_,_,M,_,_,_,_] ?
...