Why num_r1(x) and num_r2(x) type numpy.ndarray, but num_r(t) is type float? How can I keep num_r(t) type as array?
def num_r(t):
for x in t:
if x>tx:
return num_r2(x)
else:
return num_r1(x)
Thank you!
The complete example is below
# -*- coding: utf-8 -*
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import math
from pylab import *
#### physical parameters
c = 2.998*10**10
hp = 6.626*10**-27
hb = 1.055*10**-27
kb = 1.381*10**-16
g = 6.673*10**-8
me = 9.109*10**-28
mp = 1.673*10**-24
q = 4.803*10**-10 #gausi
sigT = 6.652*10**-25
# The evolution of the characteristic frequencies
p = 2.5
E52 = 1
epsB_r = 1
epse_r = 1
D28 = 1
n1 = 1.0
nu15 = 1*10**(-5)
r014 = 1
g42 = 1
delt12 =1
g4 = g42*10**2.5
E0 = E52*10**52
eta = g4
N0 = E0/(g4*mp*c**2)
p_tx = 3**(1./3)*2**(4./3)*mp**(-1./3)*c**(-5./3)
tx = p_tx*n1**(-1./3)*eta**(-8./3)
p_num_r1 = 2**(11./2)*7**(-2)*mp**(5./2)*me**(-3)*pi**(-1./2)*q*p_tx**(-6)*2**30*3**18*10**12
p_nuc_r1 = 2**(-33./2)*3**(-4)*10**(-4)*me*mp**(-3./2)*c**(-2)*sigT**(-2)*pi**(-1./2)*q
p_Fmax_r1 = 2**(15./2)*3**(9./2)*10**30*p_tx**(-3./2)*10**(-56)*me*mp**(1./2)*c**3*sigT*q**(-1)*2**(1./2)*3**(-1)
p_num_r2 = 2**(11./2)*7**(-2)*mp**(5./2)*me**(-3)*pi**(-1./2)*q*p_tx**(54./35)*(2**5*3**3*10**2)**(-54./35)
p_nuc_r2 = 2**(-13./2)*3**2*pi**(-1./2)*me*mp**(-3./2)*c**(-2)*sigT**(-2)*q*p_tx**(-74./35)*(2**5*3**3*10**2)**(4./35)
p_Fmax_r2 = 2**(1./2)*3**(-1)*pi**(-1./2)*me*mp**(1./2)*c**3*sigT*q**(-1)*10**(-56)
num_r1 = lambda t : p_num_r1*eta**18*((p-2)/(p-1))**2*epse_r**2*epsB_r**(1./2)*n1**(5./2)*t**6*E52**(-2)
nuc_r1 = lambda t : p_nuc_r1*eta**(-4)*epsB**(-3./2)*n1**(-3./2)*t**(-2)
Fmax_r1 = lambda t : p_Fmax_r1*N0**t**(3./2)*n1*eta**6*E52**(-1./2)*D28**(-2)*epsB_r**(1./2)
num_r2 = lambda t : p_num_r2*((p-2)/(p-1))**2*n1**(-74./35)*n1**(74./105)*eta**(592./105)*E52**(-74./105)
nuc_r2 = lambda t : p_nuc_r2*eta**(172./105)*t**(4./35)*n1**(-167./210)*epsB_r**(-3./2)
Fmax_r2 = lambda t : N0*eta**(62./105)*n1**(37./210)*epsB_r**(1./2)*t**(-34./35)*D28**(-2)
def fspe(t,u):
if num_r(t)<nuc_r(t):
return np.where(u<num_r(t),(u/num_r(t))**(1./3)*Fmax_r(t),np.where(u<nuc_r(t),(u/num_r(t))**(-(p-1.)/2)*Fmax_r(t),(u/nuc_r(t))**(-p/2)*(nuc_r(t)/num_r(t))**(-(p-1.)/2)*Fmax_r(t)))
else:
return np.where(u<nuc_r(t),(u/nuc_r(t))**(1./3)*Fmax_r(t),np.where(u<num_r(t),(u/nuc_r(t))**(-1./2)*Fmax_r(t),(u/num_r(t))**(-p/2)*(num_r(t)/nuc_r(t))**(-1.2)*Fmax_r(t)))
def num_r(t):
for x in t:
if x>tx:
return num_r2(x)
else:
return num_r1(x)
def nuc_r(t):
for x in t:
if t>tx:
return nuc_r2(x)
else:
return nuc_r1(x)
def Fmax_r(t):
for x in t:
if t>tx:
return Fmax_r2(x)
else:
return Fmax_r1(x)
i= np.arange(-4,6,0.1)
t = 10**i
dnum = [math.log10(mmm) for mmm in num_r(t)]
dnuc = [math.log10(j) for j in nuc_r(t)]
nu_obs = [math.log(2.4*10**17,10) for a in i]
plt.figure('God Bless: Observable Limit')
plt.title(r'$\nu_{obs}$ and $\nu_c$ and $\nu_m$''\nComparation')
plt.xlabel('Time: log t')
plt.ylabel(r'log $\nu$')
plt.axvline(math.log10(tx))
plt.plot(i,nu_obs,'.',label=r'$\nu_{obs}$')
plt.plot(i,dnum,'D',label=r'$\nu_m$')
plt.plot(i,dnuc,'s',label=r'$\nu_c$')
plt.legend()
plt.grid(True)
plt.savefig("nu_obs.eps", dpi=120,bbox_inches='tight')
plt.show()
But thereś a Error
TypeError Traceback (most recent call last)
<ipython-input-250-c008d4ed7571> in <module>()
95 i= np.arange(-4,6,0.1)
96 t = 10**i
---> 97 dnum = [math.log10(mmm) for mmm in num_r(t)]
TypeError: 'float' object is not iterable