Are threads more efficient?
No. But see final note (below).
On a single core, threads are much, much less efficient (than function/method calls).
As one example, on my Ubuntu 15.10(64), using g++ v5.2.1,
a) a context switch (from one thread to the other) enforced by use of std::mutex takes about 12,000 nanoseconds
b) but invoking 2 simple methods, for instance std::mutex lock() & unlock(), this takes < 50 nanoseconds. 3 orders of magnitude! So context switch vx function call is no contest.
The purpose of thread is to run at the same time, right?
Yes ... but this can not happen on a single core processor.
And on a multi-core system, context switch time can still dominate.
For example, my Ubuntu system is dual core. The measurement of context switch time I reported above uses a chain of 10 threads, where each thread simply waits for its input semaphore to be unlock()'d. When a thread's input semaphore is unlocked, the thread gets to run ... but the brief thread activity is simply 1) increment a count and check a flag, and 2) unlock() the next thread, and 3) lock() its own input mutex, i.e. wait again for the previous task signal. In that test, the thread we known as main starts the thread-sequencing with unlock() of one of the threads, and stops it with a flag that all threads can see.
During this measurement activity (about 3 seconds), Linux system monitor shows both cores are involved, and reports both cores at abut 60% utilization. I expected both cores at 100% .. don't know why they are not.
Can someone explain why we use mutexes within thread functions? Thank
you!
I suppose the most conventional use of std::mutex's is to serialize access to a memory structure (perhaps a shared-access storage or structure). If your application has data accessible by multiple threads, each write access must be serialized to prevent race conditions from corrupting the data. Sometimes, both read and write access needs to be serialized. (See dining philosophers problem.)
In your code, as an example (although I do not know what system you are using), it is possible that std::cout (a shared structure) will 'interleave' text. That is, a thread context switch might happen in the middle of printing a "hello", or even a 'hi'. This behaviour is usually undesired, but might be acceptable.
A number of years ago, I worked with vxWorks and my team learned to use mutex's on access to std::cout to eliminate that interleaving. Such behavior can be distracting, and generally, customers do not like it. (ultimately, for that app, we did away with the use of the std trio-io (cout, cerr, cin))
Devices, of various kinds, also might not function properly if you allow more than 1 thread to attempt operations on them 'simultaneously'. For example, I have written software for a device that required 50 us or more to complete its reaction to my software's 'poke', before any additional action to the device should be applied. The device simply ignored my codes actions without the wait.
You should also know that there are techniques that do not involve semaphores, but instead use a thread and an IPC to provide serialized (i.e. protected) resource access.
From wikipedia, "In concurrent programming, a monitor is a synchronization construct that allows threads to have both mutual exclusion and the ability to wait (block) for a certain condition to become true."
When the os provides a suitable IPC, I prefer to use a Hoare monitor. In my interpretation, the monitor is simply a thread that accepts commands over the IPC, and is the only thread to access the shared structure or device. When only 1 thread accesses a structure, NO mutex is needed. All other threads must send a message (via IPC) to request (or perhaps command) another structure change. The monitor thread handles one request at a time, sequentially out of the IPC.
Definition: collision
In the context of "thread context switch' and 'mutex semaphores', a 'collision' occurs when a thread must block-and-wait for access to a resource, because that resource is already 'in use' (i.e. 'occupied'). This is a forced context switch. See also the term "critical section".
When the shared resource is NOT currently in use, no collision. The lock() and unlock() cost almost nothing (by comparison to context switch).
When there is a collision, the context switch slows things down by a 'bunch'. But this 'bunch' might still be acceptable ... consider when 'bunch' is small compared to the duration of the activity inside the critical section.
Final note ... With this new idea of 'collision':
a) Multiple threads can be far less efficient in the face of many collisions.
For unexpected example, the function 'new' accesses a thread-shared resource we can call "dynamic memory". In one experience, each thread generated 1000's of new's at start up. One thread could complete that effort in 0.5 seconds. Four threads, started quickly back-to-back, took 40 seconds to complete the 4 start ups. Context switches!
b) Multiple threads can be more efficient, when you have multiple cores and no / or few collisions. Essentially, if the threads seldom interact, they can run (mostly) simultaneously.
Thread efficiency can be any where between a or b, when multiple cores and collisions.
For instance, my ram based "log" mechanisms seems to work well - one mutex access per log entry. Generally, I intentionally used minimal logging. And when debugging a 'discovered' challenge, I added additional logging (maybe later removed) to determine what was going wrong. Generally, the debugger is better than a general logging technique. But sometimes, adding several log entries worked well.