The Dude abides. Or El Duderino if you're not into the whole brevity thing.
What you're asking is really a two part question, but the Genetic Algorithm part can be easily illustrated in concept. I find that giving a basic start can be helpful, but this problem as a "whole" is too complicated to address here.
Genetic Algorithms (GA) can be used as an optimizer, as you note. In order to apply a GA to a process execution plan, you need to be able to score an execution plan, then clone and mutate the best plans. A GA works by running several plans, cloning the best, and then mutating some of them slightly to see if the offspring (cloned) plans are improved or worsened.
In this example, I created a array of 100 random Integers. Each Integer is a "process" to be run and the value of the Integer is the "cost" of running that individual process.
List<Integer> processes = new ArrayList<Integer>();
The processes are then added to an ExecutionPlan
, which is a List<List<Integer>>
. This List of List of Integers will be used to represent 4 processors doing 25 rounds of processing:
class ExecutionPlan implements Comparable<ExecutionPlan> {
List<List<Integer>> plan;
int cost;
The total cost
of an execution plan will be computed by taking the highest process cost per round (the greatest Integer) and summing the costs of all the rounds. Thus, the goal of the optimizer is to distribute the initial 100 integers (processes) into 25 rounds of "processing" on 4 "processors" such that total cost is as low as possible.
// make 10 execution plans of 25 execution rounds running on 4 processors;
List<ExecutionPlan> executionPlans = createAndIntializePlans(processes);
// Loop on generationCount
for ( int generation = 0; generation < GENERATIONCOUNT; ++generation) {
computeCostOfPlans(executionPlans);
// sort plans by cost
Collections.sort(executionPlans);
// print execution plan costs
System.out.println(generation + " = " + executionPlans);
// clone 5 better plans over 5 worse plans
// i.e., kill off the least fit and reproduce the best fit.
cloneBetterPlansOverWorsePlans(executionPlans);
// mutate 5 cloned plans
mutateClones(executionPlans);
}
When the program is run, the cost is initially randomly determined, but with each generation it improves. If you run it for 1000 generations and plot the results, a typical run will look like this:

The purpose of the GA is to Optimize
or attempt to determine the best possible solution. The reason it can be applied to you problem is that your ExecutionPlan
can be scored, cloned and mutated. The path to success, therefore, is to separate the problems in your mind. First, figure out how you can make an execution plan that can be scored as to what the cost will be to actually run it on an assumed set of hardware. Add rountines to clone and mutate an ExecutionPlan
. Once you have that plug it into this GA example. Good luck and stay cool dude.
public class Optimize {
private static int GENERATIONCOUNT = 1000;
private static int PROCESSCOUNT = 100;
private static int MUTATIONCOUNT = PROCESSCOUNT/10;
public static void main(String...strings) {
new Optimize().run();
}
// define an execution plan as 25 runs on 4 processors
class ExecutionPlan implements Comparable<ExecutionPlan> {
List<List<Integer>> plan;
int cost;
public ExecutionPlan(List<List<Integer>> plan) {
this.plan = plan;
}
@Override
public int compareTo(ExecutionPlan o) {
return cost-o.cost;
}
@Override
public String toString() {
return Integer.toString(cost);
}
}
private void run() {
// make 100 processes to be completed
List<Integer> processes = new ArrayList<Integer>();
// assign them a random cost between 1 and 100;
for ( int index = 0; index < PROCESSCOUNT; ++index) {
processes.add( new Integer((int)(Math.random() * 99.0)+1));
}
// make 10 execution plans of 25 execution rounds running on 4 processors;
List<ExecutionPlan> executionPlans = createAndIntializePlans(processes);
// Loop on generationCount
for ( int generation = 0; generation < GENERATIONCOUNT; ++generation) {
computeCostOfPlans(executionPlans);
// sort plans by cost
Collections.sort(executionPlans);
// print execution plan costs
System.out.println(generation + " = " + executionPlans);
// clone 5 better plans over 5 worse plans
cloneBetterPlansOverWorsePlans(executionPlans);
// mutate 5 cloned plans
mutateClones(executionPlans);
}
}
private void mutateClones(List<ExecutionPlan> executionPlans) {
for ( int index = 0; index < executionPlans.size()/2; ++index) {
ExecutionPlan execution = executionPlans.get(index);
// mutate 10 different location swaps, maybe the plan improves
for ( int mutationCount = 0; mutationCount < MUTATIONCOUNT ; ++mutationCount) {
int location1 = (int)(Math.random() * 100.0);
int location2 = (int)(Math.random() * 100.0);
// swap two locations
Integer processCostTemp = execution.plan.get(location1/4).get(location1%4);
execution.plan.get(location1/4).set(location1%4, execution.plan.get(location2/4).get(location2%4));
execution.plan.get(location2/4).set(location2%4, processCostTemp);
}
}
}
private void cloneBetterPlansOverWorsePlans(List<ExecutionPlan> executionPlans) {
for ( int index = 0; index < executionPlans.size()/2; ++index) {
ExecutionPlan execution = executionPlans.get(index);
List<List<Integer>> clonePlan = new ArrayList<List<Integer>>();
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
clonePlan.add( new ArrayList<Integer>(execution.plan.get(roundNumber)) );
}
executionPlans.set( index + executionPlans.size()/2, new ExecutionPlan(clonePlan) );
}
}
private void computeCostOfPlans(List<ExecutionPlan> executionPlans) {
for ( ExecutionPlan execution: executionPlans) {
execution.cost = 0;
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
// cost of a round is greatest "communication time".
List<Integer> round = execution.plan.get(roundNumber);
int roundCost = round.get(0)>round.get(1)?round.get(0):round.get(1);
roundCost = execution.cost>round.get(2)?roundCost:round.get(2);
roundCost = execution.cost>round.get(3)?roundCost:round.get(3);
// add all the round costs' to determine total plan cost
execution.cost += roundCost;
}
}
}
private List<ExecutionPlan> createAndIntializePlans(List<Integer> processes) {
List<ExecutionPlan> executionPlans = new ArrayList<ExecutionPlan>();
for ( int planNumber = 0; planNumber < 10; ++planNumber) {
// randomize the processes for this plan
Collections.shuffle(processes);
// and make the plan
List<List<Integer>> currentPlan = new ArrayList<List<Integer>>();
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
List<Integer> round = new ArrayList<Integer>();
round.add(processes.get(4*roundNumber+0));
round.add(processes.get(4*roundNumber+1));
round.add(processes.get(4*roundNumber+2));
round.add(processes.get(4*roundNumber+3));
currentPlan.add(round);
}
executionPlans.add(new ExecutionPlan(currentPlan));
}
return executionPlans;
}
}
> plan. That would be the genome. Each of the integers a chromosome. These are the things that are `reproduced` and `mutated`. Let's go bowling Dude.
– K.Nicholas Apr 30 '16 at 12:58