I have simple code, which flags nodes with in region enclosed by cylinder. On implementing the code, the result is mild tilt of the cylinder observed case with 90 degrees
The actual issue: The above algorithm is implemented in Fortran. The code checks for points in Cartesian grid if inside the cylinder. Following being the test case: The cylinder makes an angle 90 degrees in the yz-plane with respect to y-axis. Therefore, the orientation vector $\vec{o}$ is (0, 1, 0).
Case 1:
Orientation vector is assigned directly with $\vec{o}=(0.0,1.0,0.0)$. This results in perfect cylinder with $\theta=90.$
Case 2:
Orientation vector is specified with intrinsic Fortran functions with double precision accuracy dsin
and dcos
with $\vec{o}=(0.0, \sin(\pi/2.0), \cos(\pi/2.0))$ with $\pi$ value assigned with more than 20 significant decimal points. The resulting cylinder results in mild tilt.
The highlighted region indicates the extra material due to tilt of cylinder with respect to Cartesian axes. I also tried architecture specific maximum precision "pi" value. This also results in same problem.
This shows like the actual angle made by cylinder is not 90 degrees. Can anyone suggest valid solution for this problem. I need to use the inbuilt trigonometric functions for arbitrary angles and looking for accurate cell flagging method.
Note: All operations are performed with double precision accuracy.
The actual function is below. rk
is defined parameter with value 8
pure logical function in_particle(p,px,x)
type(md_particle_type),intent(in) :: p
real(kind=rk),intent(in) :: px(3),x(3)
real(kind=rk) :: r(3),rho(3),rop(2),ro2,rdiff,u
rop = particle_radii(p) ! (/R_orth,R_para/)
ro2 = rop(1)**2
rdiff = rop(2) - rop(1)
r = x-px
! Case 1:
! u = dot_product((/0.0_rk,-1.0_rk,0.0_rk/),r)
! rho = r-u*(/0.0_rk,-1.0_rk,0.0_rk/)
! Case 2:
u = dot_product((/0.0_rk,-dsin(pi/2.0_rk),dcos(pi/2.0_rk)/),r)
rho = r-u*(/0.0_rk,-dsin(pi/2.0_rk),dcos(pi/2.0_rk)/)
if((u.le.rdiff).and.(u.ge.-rdiff)) then
in_particle = dot_product(rho,rho) < ro2
else
in_particle = .false.
end if
end function in_particle
Note: The trigonometric operations are done inside the code to explain the problem better. However the original code reads the orientation in vector form from user. Then converts this information to quaternions for particle-particle collision operations. On converting quaternions back to orientation vector, this error is even more amplified. Even before the start of collision, the orientation of cylinder tends to be disoriented by 2 lattice cells.