I want to find the start position of the longest sequence of 1's in my array:
a1=[0,0,1,1,1,1,0,0,1,1]
#2
I am following this answer to find the length of the longest sequence. However, I was not able to determine the position.
Inspired by this solution
, here's a vectorized approach to solve it -
# Get start, stop index pairs for islands/seq. of 1s
idx_pairs = np.where(np.diff(np.hstack(([False],a1==1,[False]))))[0].reshape(-1,2)
# Get the island lengths, whose argmax would give us the ID of longest island.
# Start index of that island would be the desired output
start_longest_seq = idx_pairs[np.diff(idx_pairs,axis=1).argmax(),0]
Sample run -
In [89]: a1 # Input array
Out[89]: array([0, 0, 1, 1, 1, 1, 0, 0, 1, 1])
In [90]: idx_pairs # Start, stop+1 index pairs
Out[90]:
array([[ 2, 6],
[ 8, 10]])
In [91]: np.diff(idx_pairs,axis=1) # Island lengths
Out[91]:
array([[4],
[2]])
In [92]: np.diff(idx_pairs,axis=1).argmax() # Longest island ID
Out[92]: 0
In [93]: idx_pairs[np.diff(idx_pairs,axis=1).argmax(),0] # Longest island start
Out[93]: 2
A more compact one-liner using groupby()
. Uses enumerate()
on the raw data to keep the starting positions through the analysis pipeline, evenutally ending up with the list of tuples [(2, 4), (8, 2)] each tuple containing the starting position and length of non-zero runs:
from itertools import groupby
L = [0,0,1,1,1,1,0,0,1,1]
print max(((lambda y: (y[0][0], len(y)))(list(g)) for k, g in groupby(enumerate(L), lambda x: x[1]) if k), key=lambda z: z[1])[0]
lambda: x
is the key function for groupby()
since we enumerated L
lambda: y
packages up results we need since we can only evaluate g
once, without saving
lambda: z
is the key function for max()
to pull out the lengths
Prints '2' as expected.
This seems to work, using groupby
from itertools
, this only goes through the list once:
from itertools import groupby
pos, max_len, cum_pos = 0, 0, 0
for k, g in groupby(a1):
if k == 1:
pat_size = len(list(g))
pos, max_len = (pos, max_len) if pat_size < max_len else (cum_pos, pat_size)
cum_pos += pat_size
else:
cum_pos += len(list(g))
pos
# 2
max_len
# 4
You could use a for loop and check if the next few items (of length m
where m
is the max length) are the same as the maximum length:
# Using your list and the answer from the post you referred
from itertools import groupby
L = [0,0,1,1,1,1,0,0,1,1]
m = max(sum(1 for i in g) for k, g in groupby(L))
# Here is the for loop
for i, s in enumerate(L):
if len(L) - i + 2 < len(L) - m:
break
if s == 1 and 0 not in L[i:i+m]:
print i
break
This will give:
2
Another way of doing in a single loop, but without resorting to itertool
's groupby
.
max_start = 0
max_reps = 0
start = 0
reps = 0
for (pos, val) in enumerate(a1):
start = pos if reps == 0 else start
reps = reps + 1 if val == 1 else 0
max_reps = max(reps, max_reps)
max_start = start if reps == max_reps else max_start
This could also be done in a one-liner fashion using reduce
:
max_start = reduce(lambda (max_start, max_reps, start, reps), (pos, val): (start if reps == max(reps, max_reps) else max_start, max(reps, max_reps), pos if reps == 0 else start, reps + 1 if val == 1 else 0), enumerate(a1), (0, 0, 0, 0))[0]
In Python 3, you cannot unpack tuples inside the lambda
arguments definition, so it's preferable to define the function using def
first:
def func(acc, x):
max_start, max_reps, start, reps = acc
pos, val = x
return (start if reps == max(reps, max_reps) else max_start,
max(reps, max_reps),
pos if reps == 0 else start,
reps + 1 if val == 1 else 0)
max_start = reduce(func, enumerate(a1), (0, 0, 0, 0))[0]
In any of the three cases, max_start
gives your answer (i.e. 2
).
Using more_itertools
, a third-party library:
Given
import itertools as it
import more_itertools as mit
lst = [0, 0, 1, 1, 1, 1, 0, 0, 1, 1]
Code
longest_contiguous = max([tuple(g) for _, g in it.groupby(lst)], key=len)
longest_contiguous
# (1, 1, 1, 1)
pred = lambda w: w == longest_contiguous
next(mit.locate(mit.windowed(lst, len(longest_contiguous)), pred=pred))
# 2
See also the more_itertools.locate
docstring for details on how these tools work.
For another solution that uses only Numpy, I think this should work in all the cases. The most upvoted solution is probably faster though.
tmp = np.cumsum(np.insert(np.array(a1) != 1, 0, False)) # value of tmp[i+1] was not incremented when a1[i] is 1
# [0, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4]
values, counts = np.unique(tmp, return_counts=True)
# [0, 1, 2, 3, 4], [1, 1, 5, 1, 3]
counts_idx = np.argmax(counts)
longest_sequence_length = counts[counts_idx] - 1
# 4
longest_sequence_idx = np.argmax(tmp == values[counts_idx])
# 2
I've implemented a run-searching function for numpy arrays in haggis.npy_util.mask2runs
. You can use it like this:
runs, lengths = mask2runs(a1, return_lengths=True)
result = runs[lengths.argmax(), 0]