A solution in Pytorch Lightning
This isn't the full class, but rather what you have to add to make it work in the framework.
import pytorch_lightning as pl
import seaborn as sn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
def __init__(self, config, trained_vae, latent_dim):
self.val_confusion = pl.metrics.classification.ConfusionMatrix(num_classes=self._config.n_clusters)
self.logger: Optional[TensorBoardLogger] = None
def forward(self, x):
...
return log_probs
def validation_step(self, batch, batch_index):
if self._config.dataset == "mnist":
orig_batch, label_batch = batch
orig_batch = orig_batch.reshape(-1, 28 * 28)
log_probs = self.forward(orig_batch)
loss = self._criterion(log_probs, label_batch)
self.val_confusion.update(log_probs, label_batch)
return {"loss": loss, "labels": label_batch}
def validation_step_end(self, outputs):
return outputs
def validation_epoch_end(self, outs):
tb = self.logger.experiment
# confusion matrix
conf_mat = self.val_confusion.compute().detach().cpu().numpy().astype(np.int)
df_cm = pd.DataFrame(
conf_mat,
index=np.arange(self._config.n_clusters),
columns=np.arange(self._config.n_clusters))
plt.figure()
sn.set(font_scale=1.2)
sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, fmt='d')
buf = io.BytesIO()
plt.savefig(buf, format='jpeg')
buf.seek(0)
im = Image.open(buf)
im = torchvision.transforms.ToTensor()(im)
tb.add_image("val_confusion_matrix", im, global_step=self.current_epoch)
and the call
logger = TensorBoardLogger(save_dir=tb_logs_folder, name='Classifier')
trainer = Trainer(
default_root_dir=classifier_checkpoints_path,
logger=logger,
)