13

Screenshot of the query below:

Groupby Query

Is there a way to easily drop the upper level column index and a have a single level with labels such as points_prev_amax, points_prev_amin, gf_prev_amax, gf_prev_amin and so on?

Cœur
  • 37,241
  • 25
  • 195
  • 267
hkhare
  • 225
  • 3
  • 10

2 Answers2

17

Use list comprehension for set new column names:

df.columns = df.columns.map('_'.join)

Or:

df.columns = ['_'.join(col) for col in df.columns]

Sample:

df = pd.DataFrame({'A':[1,2,2,1],
                   'B':[4,5,6,4],
                   'C':[7,8,9,1],
                   'D':[1,3,5,9]})

print (df)
   A  B  C  D
0  1  4  7  1
1  2  5  8  3
2  2  6  9  5
3  1  4  1  9

df = df.groupby('A').agg([max, min])

df.columns = df.columns.map('_'.join)
print (df)
   B_max  B_min  C_max  C_min  D_max  D_min
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

print (['_'.join(col) for col in df.columns])
['B_max', 'B_min', 'C_max', 'C_min', 'D_max', 'D_min']

df.columns = ['_'.join(col) for col in df.columns]
print (df)
   B_max  B_min  C_max  C_min  D_max  D_min
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

If need prefix simple swap items of tuples:

df.columns = ['_'.join((col[1], col[0])) for col in df.columns]
print (df)
   max_B  min_B  max_C  min_C  max_D  min_D
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

Another solution:

df.columns = ['{}_{}'.format(i[1], i[0]) for i in df.columns]
print (df)
   max_B  min_B  max_C  min_C  max_D  min_D
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

If len of columns is big (10^6), then rather use to_series and str.join:

df.columns = df.columns.to_series().str.join('_')
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
2

Using @jezrael's setup

df = pd.DataFrame({'A':[1,2,2,1],
                   'B':[4,5,6,4],
                   'C':[7,8,9,1],
                   'D':[1,3,5,9]})

df = df.groupby('A').agg([max, min])

Assign new columns with

from itertools import starmap

def flat(midx, sep=''):
    fstr = sep.join(['{}'] * midx.nlevels)
    return pd.Index(starmap(fstr.format, midx))

df.columns = flat(df.columns, '_')

df

enter image description here

piRSquared
  • 285,575
  • 57
  • 475
  • 624