11
import pandas as pd

mydata = [{'ID' : '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016'},
          {'ID' : '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016'}]

mydata2 = [{'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '10/10/2016'},
           {'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '11/10/2016'},
           {'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '12/10/2016'},
           {'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '13/10/2016'},
           {'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '14/10/2016'},
           {'ID': '10', 'Entry Date': '10/10/2016', 'Exit Date': '15/10/2016', 'Date': '15/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '10/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '11/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '12/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '13/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '14/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '15/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '16/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '17/10/2016'},
           {'ID': '20', 'Entry Date': '10/10/2016', 'Exit Date': '18/10/2016', 'Date': '18/10/2016'},]

df = pd.DataFrame(mydata)
df2 = pd.DataFrame(mydata2)

I can't find an answer on how to change 'df' into 'df2'. Maybe I'm not phrasing it right.

I want to take all dates between the dates in two columns 'Entry Date', 'Exit Date', and make a row for each, entering a corresponding date for each row in a new column, 'Date'.

Any help would be greatly appreciated.

jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
Colin O'Brien
  • 2,175
  • 5
  • 20
  • 26

2 Answers2

10

You can use melt for reshaping, set_index and remove column variable:

#convert columns to datetime
df['Entry Date'] = pd.to_datetime(df['Entry Date'])
df['Exit Date'] = pd.to_datetime(df['Exit Date'])

df2 = pd.melt(df, id_vars='ID', value_name='Date')
df2.Date = pd.to_datetime(df2.Date)
df2.set_index('Date', inplace=True)
df2.drop('variable', axis=1, inplace=True)
print (df2)
            ID
Date          
2016-10-10  10
2016-10-10  20
2016-10-15  10
2016-10-18  20

Then groupby with resample and ffill missing values:

df3 = df2.groupby('ID').resample('D').ffill().reset_index(level=0, drop=True).reset_index()
print (df3)
         Date  ID
0  2016-10-10  10
1  2016-10-11  10
2  2016-10-12  10
3  2016-10-13  10
4  2016-10-14  10
5  2016-10-15  10
6  2016-10-10  20
7  2016-10-11  20
8  2016-10-12  20
9  2016-10-13  20
10 2016-10-14  20
11 2016-10-15  20
12 2016-10-16  20
13 2016-10-17  20
14 2016-10-18  20

Last merge original DataFrame:

print (pd.merge(df, df3))
   Entry Date  Exit Date  ID       Date
0  2016-10-10 2016-10-15  10 2016-10-10
1  2016-10-10 2016-10-15  10 2016-10-11
2  2016-10-10 2016-10-15  10 2016-10-12
3  2016-10-10 2016-10-15  10 2016-10-13
4  2016-10-10 2016-10-15  10 2016-10-14
5  2016-10-10 2016-10-15  10 2016-10-15
6  2016-10-10 2016-10-18  20 2016-10-10
7  2016-10-10 2016-10-18  20 2016-10-11
8  2016-10-10 2016-10-18  20 2016-10-12
9  2016-10-10 2016-10-18  20 2016-10-13
10 2016-10-10 2016-10-18  20 2016-10-14
11 2016-10-10 2016-10-18  20 2016-10-15
12 2016-10-10 2016-10-18  20 2016-10-16
13 2016-10-10 2016-10-18  20 2016-10-17
14 2016-10-10 2016-10-18  20 2016-10-18
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
  • df2.groupby('ID').resample('D').ffill().reset_index(level=0, drop=True).reset_index() returns no value unfortunately – Colin O'Brien Oct 12 '16 at 11:43
  • 1
    Yes, maybe need pandas version `0.18.1` or newer. - [see](http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#groupby-syntax-with-window-and-resample-operations) – jezrael Oct 12 '16 at 11:49
2

With newer versions of Pandas (> 1.1), you can use the explode function to generate the dates:

df['Entry Date'] = pd.to_datetime(df['Entry Date'])
df['Exit Date'] = pd.to_datetime(df['Exit Date'])

(df.assign(Date = [pd.date_range(start, end) 
                   for start, end 
                   in zip(df['Entry Date'], df['Exit Date'])]
          )
   .explode('Date', ignore_index = True)
)
    ID Entry Date  Exit Date       Date
0   10 2016-10-10 2016-10-15 2016-10-10
1   10 2016-10-10 2016-10-15 2016-10-11
2   10 2016-10-10 2016-10-15 2016-10-12
3   10 2016-10-10 2016-10-15 2016-10-13
4   10 2016-10-10 2016-10-15 2016-10-14
5   10 2016-10-10 2016-10-15 2016-10-15
6   20 2016-10-10 2016-10-18 2016-10-10
7   20 2016-10-10 2016-10-18 2016-10-11
8   20 2016-10-10 2016-10-18 2016-10-12
9   20 2016-10-10 2016-10-18 2016-10-13
10  20 2016-10-10 2016-10-18 2016-10-14
11  20 2016-10-10 2016-10-18 2016-10-15
12  20 2016-10-10 2016-10-18 2016-10-16
13  20 2016-10-10 2016-10-18 2016-10-17
14  20 2016-10-10 2016-10-18 2016-10-18
sammywemmy
  • 27,093
  • 4
  • 17
  • 31