I thought I was fairly good with C++, it turns out that I'm not. A previous question I asked: C++ const lvalue references had the following code in one of the answers:
#include <iostream>
using namespace std;
int& GenX(bool reset)
{
static int* x = new int;
*x = 100;
if (reset)
{
delete x;
x = new int;
*x = 200;
}
return *x;
}
class YStore
{
public:
YStore(int& x);
int& getX() { return my_x; }
private:
int& my_x;
};
YStore::YStore(int& x)
: my_x(x)
{
}
int main()
{
YStore Y(GenX(false));
cout << "X: " << Y.getX() << endl;
GenX(true); // side-effect in Y
cout << "X: " << Y.getX() << endl;
return 0;
}
The above code outputs X: 100, X:200. I do not understand why. I played with it a bit, and added some more output, namely, a cout before the delete x; and a cout after the new x; within the reset control block.
What I got was: before delete: 0x92ee018 after new: 0x92ee018
So, I figured that static was silently failing the update to x, and the second getX was playing with (after the delete) uninitialized memory; To test this, I added a x = 0; after the delete, before the new, and another cout to ensure that x was indeed reset to 0. It was.
So, what is going on here? How come the new returns the exact same block of memory that the previous delete supposedly free'd? Is this just because that's what the OS's memory manager decided to do, or is there something special about static that I'm missing?
Thank you!