This is actually a Mahjong-based question, but a Romme- or even Poker-based background will also easily suffice to understand.
In Mahjong 14 tiles (tiles are like cards in Poker) are arranged to 4 sets and a pair. A street ("123") always uses exactly 3 tiles, not more and not less. A set of the same kind ("111") consists of exactly 3 tiles, too. This leads to a sum of 3 * 4 + 2 = 14 tiles.
There are various exceptions like Kan or Thirteen Orphans that are not relevant here. Colors and value ranges (1-9) are also not important for the algorithm.
I'm trying to determine if a hand can be arranged in the way described above. For certain reasons it should not only be able to deal with 14 but any number of tiles. (The next step would be to find how many tiles need to be exchanged to be able to complete a hand.)
Examples:
11122233344455
- easy enough, 4 sets and a pair.
12345555678999
- 123, 456, 789, 555, 99
11223378888999
- 123, 123, 789, 888, 99
11223344556789
- not a valid hand
My current and not yet implemented idea is this: For each tile, try to make a) a street b) a set c) a pair. If none works (or there would be > 1 pair), go back to the previous iteration and try the next option, or, if this is the highest level, fail. Else, remove the used tiles from the list of remaining tiles and continue with the next iteration.
I believe this approach works and would also be reasonably fast (performance is a "nice bonus"), but I'm interested in your opinion on this. Can you think of alternate solutions? Does this or something similar already exist?
(Not homework, I'm learning to play Mahjong.)