This is a warning from the interpreter that because your default argument is mutable, you might end up changing the default if you modify it in-place, which could lead to unexpected results in some cases. The default argument is really just a reference to the object you indicate, so much like when you alias a list to two different identifiers, e.g.,
>>> a={}
>>> b=a
>>> b['foo']='bar'
>>> a
{'foo': 'bar'}
if the object is changed through any reference, whether during that call to the function, a separate call, or even outside the function, it will affect future calls the function. If you're not expecting the behavior of the function to change at runtime, this could be a cause for bugs. Every time the function is called, it's the same name being bound to the same object. (in fact, I'm not sure if it even goes through the whole name binding process each time? I think it just gets another reference.)
The (likely unwanted) behavior
You can see the effect of this by declaring the following and calling it a few times:
>>> def mutable_default_arg (something = {'foo':1}):
something['foo'] += 1
print (something)
>>> mutable_default_arg()
{'foo': 2}
>>> mutable_default_arg()
{'foo': 3}
Wait, what? yes, because the object referenced by the argument doesn't change between calls, changing one of its elements changes the default. If you use an immutable type, you don't have to worry about this because it shouldn't be possible, under standard circumstances, to change an immutable's data. I don't know if this holds for user-defined classes, but that is why this is usually just addressed with "None" (that, and you only need it as a placeholder, nothing more. Why spend the extra RAM on something more complicated?)
Duct-taped problems...
In your case, you were saved by an implicit copy, as another answer pointed out, but it's never a good idea to rely on implicit behavior, especially unexpected implicit behavior, since it could change. That's why we say "explicit is better than implicit". Besides which, implicit behavior tends to hide what's going on, which could lead you or another programmer to removing the duct tape.
...with simple (permanent) solutions
You can avoid this bug magnet completely and satisfy the warning by, as others have suggested, using an immutable type such as None
, checking for it at the start of the function, and if found, immediately replacing it before your function gets going:
def put_wall_post(self, message, attachment=None, profile_id="me"):
if attachment is None:
attachment = {}
return self.put_object(profile_id, "feed", message=message, **attachment)
Since immutable types force you to replace them (Technically, you are binding a new object to the same name. In the above, the reference to None is overwritten when attachment is rebound to the new empty dictionary) instead of updating them, you know attachment
will always start as None
unless specified in the call parameters, thus avoiding the risk of unexpected changes to the default.
(As an aside, when in doubt whether an object is the same as another object, compare them with is
or check id(object)
. The former can check whether two references refer to the same object, and the latter can be useful for debugging by printing a unique identifier—typically the memory location—for the object.)